Advertisements
Advertisements
प्रश्न
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
उत्तर
Here, 2 tan2x + sec2x = 2
Which gives tan x = `+- 1/sqrt(3)`
If we take tan x = `1/sqrt(3)`
Then x = `pi/6` or `(7pi)/6`
Again, if we take tan x = `(-1)/sqrt(3)`
Then x = `(5pi)/6` or `(11pi)/6`
Therefore, the possible solutions to the above equations are
x = `pi/6, (5pi)/6, (7pi)/6` and `(11pi)/6` where 0 ≤ x ≤ 2π.
APPEARS IN
संबंधित प्रश्न
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\tan x = \frac{a}{b},\] show that
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
Which of the following is incorrect?
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
The smallest positive angle which satisfies the equation
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
The minimum value of 3cosx + 4sinx + 8 is ______.