Advertisements
Advertisements
प्रश्न
Solve the following equation:
उत्तर
\[ \cos x \cos2x \cos3x = \frac{1}{4}\]
\[ \Rightarrow \left[ \frac{\cos\left( x + 2x \right) + \cos\left( 2x - x \right)}{2} \right]\cos3x = \frac{1}{4}\]
\[ \Rightarrow 2\left[ \cos3x + \cos x \right]\cos3x = 1\]
\[ \Rightarrow 2 \cos^2 3x + 2\cos x \cos3x - 1 = 0\]
\[ \Rightarrow 2 \cos^2 3x - 1 + 2\cos x \cos3x = 0\]
\[ \Rightarrow \cos6x + \cos4x + \cos2x = 0\]
\[ \Rightarrow \cos6x + \cos2x + \cos4x = 0\]
\[ \Rightarrow 2\cos4xcos2x + \cos4x = 0\]
\[ \Rightarrow \cos4x\left( 2\cos2x + 1 \right) = 0\]
\[ \Rightarrow \cos4x = 0 or 2\cos2x + 1 = 0\]
\[ \Rightarrow \cos4x = 0 or \cos2x = \frac{- 1}{2}\]
\[ \Rightarrow \cos4x = \cos\frac{\pi}{2} or \cos2x = \cos\frac{2\pi}{3}\]
\[ \Rightarrow 4x = \left( 2n + 1 \right)\frac{\pi}{2}, n \in Z or 2x = 2m\pi \pm \frac{2\pi}{3}, m \in Z\]
\[ \Rightarrow x = \left( 2n + 1 \right)\frac{\pi}{8}, n \in Z or x = m\pi \pm \frac{\pi}{3}, m \in Z\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation sin 2x + cos x = 0
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
In a ∆ABC, prove that:
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of points of intersection of the curves
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
The minimum value of 3cosx + 4sinx + 8 is ______.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.