Advertisements
Advertisements
Question
If tan θ = `(-4)/3`, then sin θ is ______.
Options
`(-4)/5` but not `4/5`
`(-4)/5` or `4/5`
`4/5` but not `- 4/5`
None of these
Solution
If tan θ = `(-4)/3`, then sin θ is `underline((-4)/5 or 4/5)`.
Explanation:
Since tan θ = `- 4/3` is negative, θ lies either in the second quadrant or in the fourth quadrant.
Thus sin θ = `4/5` if θ lies in the second quadrant or sin θ = `- 4/5`, if θ lies in the fourth quadrant.
APPEARS IN
RELATED QUESTIONS
Find the radian measure corresponding to the following degree measure:
520°
If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
10 cm
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
15 cm
Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]
Find the degree measure corresponding to the following radian measure:
(−3)c
Find the radian measure corresponding to the following degree measure:
300°
Find the radian measure corresponding to the following degree measure: 35°
Find the radian measure corresponding to the following degree measure: 135°
The difference between the two acute angles of a right-angled triangle is \[\frac{2\pi}{5}\] radians. Express the angles in degrees.
Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.
The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.
The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.
The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.
Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.
A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?
A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?
Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.
If the angles of a triangle are in A.P., then the measures of one of the angles in radians is
If OP makes 4 revolutions in one second, the angular velocity in radians per second is
A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is
The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\] radian at the centre is
If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ
Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
The value of tan1° tan2° tan3° ... tan89° is ______.
State whether the statement is True or False? Also give justification.
The equality sinA + sin2A + sin3A = 3 holds for some real value of A.
State whether the statement is True or False? Also give justification.
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`