English

The Radius of the Circle Whose Arc of Length 15 π Cm Makes an Angle of - Mathematics

Advertisements
Advertisements

Question

The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\]  radian at the centre is

 

Options

  • 10 cm

  • 20 cm

  • \[11\frac{1}{4}cm\]

     

  • \[22\frac{1}{2}cm\]

     

MCQ

Solution

 20 cm
\[\theta = \frac{\text{ Arc }}{\text{ Radius}}\]
\[ \Rightarrow \frac{3\pi}{4} = \frac{15\pi}{\text{Radius}}\]
\[ \Rightarrow \text{ Radius }= \frac{60}{3} = 20 cm\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Measurement of Angles - Exercise 4.2 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 4 Measurement of Angles
Exercise 4.2 | Q 8 | Page 17

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the radian measure corresponding to the following degree measure:

520°


Find the degree measure corresponding to the following radian measure (Use `pi = 22/7`)

-4


A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm

(Use `pi = 22/7`)


In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.


Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]


Find the degree measure corresponding to the following radian measure:
\[\left( \frac{18\pi}{5} \right)\]


Find the radian measure corresponding to the following degree measure:
300°


Find the radian measure corresponding to the following degree measure: 35°


Find the radian measure corresponding to the following degree measure: −56°


Find the radian measure corresponding to the following degree measure: 7° 30'


The difference between the two acute angles of a right-angled triangle is \[\frac{2\pi}{5}\] radians. Express the angles in degrees.

 

 


One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.


Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.

 

The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.


Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.

 

The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.


Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.


If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.


Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`


If tan θ = `(-4)/3`, then sin θ is ______.


“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ” 


Which of the following is correct?

[Hint: 1 radian = `180^circ/pi = 57^circ30^'` approx]


State whether the statement is True or False? Also give justification.

Sin10° is greater than cos10°


State whether the statement is True or False? Also give justification.

One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×