Advertisements
Advertisements
Question
State whether the statement is True or False? Also give justification.
One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.
Options
True
False
Solution
This statement is False.
Explanation:
Given equation is sin4θ – 2sin2θ – 1 = 0
sin2θ = `(-(-2) +- sqrt((-2)^2 - 4 xx 1 xx -1))/(2 xx 1)`
= `(2 +- sqrt(4 + 4))/2`
= `(2 +- sqrt(8))/2`
= `(2 +- 2sqrt(2))/2`
= `1 +- sqrt(2)`
∴ sin2θ = `(1 + sqrt(2))` or `(1 - sqrt(2))`
⇒ – 1 ≤ sin θ ≤ 1
⇒ sin2θ ≤ 1 but sin2θ = `(1 + sqrt(2))` or `(1 - sqrt(2))`
Which is not possible.
APPEARS IN
RELATED QUESTIONS
Find the radian measure corresponding to the following degree measure:
– 47° 30'
Find the radian measure corresponding to the following degree measure:
240°
Find the radian measure corresponding to the following degree measure:
520°
A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm
(Use `pi = 22/7`)
In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
10 cm
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
15 cm
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
21 cm
Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]
Find the degree measure corresponding to the following radian measure:
1c
Find the radian measure corresponding to the following degree measure:
300°
Find the radian measure corresponding to the following degree measure: −56°
Find the radian measure corresponding to the following degree measure: −300°
Find the radian measure corresponding to the following degree measure: 7° 30'
One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.
Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.
Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are
Angles of the quadrilateral in radians =
The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.
The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.
A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?
The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.
The angle between the minute and hour hands of a clock at 8:30 is
Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
If tan θ = `(-4)/3`, then sin θ is ______.
State whether the statement is True or False? Also give justification.
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`