English

Find the radian measure corresponding to the following degree measure: – 47° 30' - Mathematics

Advertisements
Advertisements

Question

Find the radian measure corresponding to the following degree measure:

– 47° 30'

Sum

Solution

– 47° 30′

60' = 1° Then 30' = `(30/60)^circ = (1/2)^circ`

– 47° 30′ = - `(47 1/2)^circ = (-95/2)^circ`

Now

180' = π radian

`-95/2` degree = `pi/180 xx (-95/2)` radian = `((-19)/(36xx2)) pi` radian = `(-19)/72 pi` radian

∴ -47° 30' = `-19/72pi` radian

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise 3.1 [Page 54]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise 3.1 | Q 1.2 | Page 54
RD Sharma Mathematics [English] Class 11
Chapter 4 Measurement of Angles
Exercise 4.1 | Q 2.8 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the radian measure corresponding to the following degree measure:

25°


Find the radian measure corresponding to the following degree measure:

520°


Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).

`(7pi)/6`


A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?


In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.


If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.


Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]


Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]


Find the degree measure corresponding to the following radian measure:
\[\left( \frac{18\pi}{5} \right)\]


Find the degree measure corresponding to the following radian measure: 
(−3)c


Find the radian measure corresponding to the following degree measure: 35°


Find the radian measure corresponding to the following degree measure: 135°


Find the radian measure corresponding to the following degree measure: −300°


The difference between the two acute angles of a right-angled triangle is \[\frac{2\pi}{5}\] radians. Express the angles in degrees.

 

 


Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.


The number of sides of two regular polygons are as 5 : 4 and the difference between their angles is 9°. Find the number of sides of the polygons.

 

A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?

 

The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.


Find the diameter of the sun in km supposing that it subtends an angle of 32' at the eye of an observer. Given that the distance of the sun is 91 × 106 km.

 

If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.


If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is


The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\]  radian at the centre is

 

If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ


Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`


“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ” 


The value of tan1° tan2° tan3° ... tan89° is ______.


State whether the statement is True or False? Also give justification.

The equality sinA + sin2A + sin3A = 3 holds for some real value of A.


State whether the statement is True or False? Also give justification.

`cos  (2pi)/15 cos  (4pi)/15 cos  (8pi)/15 cos  (16pi)/15 = 1/16`


State whether the statement is True or False? Also give justification.

One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×