English

If the Arcs of the Same Length in Two Circles Subtend Angles 65° and 110° at the Centre, than the Ratio of the Radii of the Circles is - Mathematics

Advertisements
Advertisements

Question

If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is

Options

  • 22 : 13

  • 11 : 13

  • 22 : 15

  • 21 : 13

MCQ

Solution

22:13
Let the angles subtended at the centres by the arcs and radii of the first and second circles be \[\theta_1\text{ and } r_1\text{ and }\theta_2\text{ and }r_2 ,\] respectively.
We have:
\[\theta_1 = 65^\circ = \left( 65 \times \frac{\pi}{180} \right)\text{ radian }\]

\[\theta_2 = 65^\circ = \left( 110 \times \frac{\pi}{180} \right)\text{ radian }\]
\[\theta_1 = \frac{l}{r_1}\]
\[\Rightarrow r_1 = \frac{l}{\left( 65 \times \frac{\pi}{180} \right)}\]
\[\theta_2 = \frac{l}{r_2}\]
\[\Rightarrow r_2 = \frac{l}{\left( 110 \times \frac{\pi}{180} \right)}\]
\[\Rightarrow \frac{r_1}{r_2} = \frac{\frac{l}{\left( 65 \times \frac{\pi}{180} \right)}}{\frac{l}{\left( 110 \times \frac{\pi}{180} \right)}} = \frac{110}{65} = \frac{22}{13}\]
\[\Rightarrow r_1 : r_2 = 22: 13\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Measurement of Angles - Exercise 4.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 4 Measurement of Angles
Exercise 4.1 | Q 5 | Page 17

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the radian measure corresponding to the following degree measure:

25°


Find the radian measure corresponding to the following degree measure:

240°


Find the radian measure corresponding to the following degree measure:

520°


Find the degree measure corresponding to the following radian measure `(use  pi = 22/7)`

`11/16`


Find the degree measure corresponding to the following radian measure (Use `pi = 22/7`)

-4


Find the degree measures corresponding to the following radian measures (Use `pi = 22/7`)

`(5pi)/3`


A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm

(Use `pi = 22/7`)


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

21 cm


Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]


Find the radian measure corresponding to the following degree measure: 35°


Find the radian measure corresponding to the following degree measure: 7° 30'


Find the radian measure corresponding to the following degree measure: 125° 30'


Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.


The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.

 

The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.

 

The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.


The number of sides of two regular polygons are as 5 : 4 and the difference between their angles is 9°. Find the number of sides of the polygons.

 

A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?

 

Find the diameter of the sun in km supposing that it subtends an angle of 32' at the eye of an observer. Given that the distance of the sun is 91 × 106 km.

 

If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.


If OP makes 4 revolutions in one second, the angular velocity in radians per second is


The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\]  radian at the centre is

 

Find the value of `sqrt(3)` cosec 20° – sec 20°


Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`


The value of tan1° tan2° tan3° ... tan89° is ______.


The value of cos1° cos2° cos3° ... cos179° is ______.


State whether the statement is True or False? Also give justification.

The equality sinA + sin2A + sin3A = 3 holds for some real value of A.


State whether the statement is True or False? Also give justification.

One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×