English

The Angles of a Triangle Are in A.P. Such that the Greatest is 5 Times the Least. Find the Angles in Radians. - Mathematics

Advertisements
Advertisements

Question

The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.

Solution

Let the angles of the triangle be

\[\left( a - d \right)^\circ, \left( a \right)^\circ \text{ and }\left( a + d \right)^\circ\]
We know:
\[a - d + a + a + d = 180\]
\[ \Rightarrow 3a = 180\]
\[ \Rightarrow a = 60\]
Given:
Greatest angle= 5 x Least angle
\[\text{ or,} \frac{\text{ Greatest angle }}{\text{ Least angle }} = 5\]
\[\text{ or, }\frac{a + d}{a - d} = 5\]
\[\text{ or, }\frac{60 + d}{60 - d} = 5\]
\[\text{ or, }60 + d = 300 - 5d\]
\[\text{ or, }6d = 240\]
\[\text{ or, }d = 40\]
Hence, the angles are
\[\left( a - d \right)^\circ, \left( a \right)^\circ \text{ and }\left( a + d \right)^\circ\], i.e.,
\[20^\circ, 60^\circ \text{ and }100^\circ\], respectively.
∴ Angles of the triangle in radians = \[\left( 20 \times \frac{\pi}{180} \right), \left( 60 \times \frac{\pi}{180} \right) \text{ and }\left( 100 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{9}, \frac{\pi}{3} \text{ and }\frac{5\pi}{9}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Measurement of Angles - Exercise 4.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 4 Measurement of Angles
Exercise 4.1 | Q 9 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the radian measure corresponding to the following degree measure:

25°


Find the radian measure corresponding to the following degree measure:

520°


Find the degree measure corresponding to the following radian measure (Use `pi = 22/7`)

-4


Find the degree measures corresponding to the following radian measures (Use `pi = 22/7`)

`(5pi)/3`


Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).

`(7pi)/6`


A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm

(Use `pi = 22/7`)


In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

10 cm


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

15 cm


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

21 cm


Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]


Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]


Find the degree measure corresponding to the following radian measure:
\[\left( \frac{18\pi}{5} \right)\]


Find the degree measure corresponding to the following radian measure: 
(−3)c


Find the degree measure corresponding to the following radian measure: 
 1c


Find the radian measure corresponding to the following degree measure:
300°


Find the radian measure corresponding to the following degree measure: −56°


Find the radian measure corresponding to the following degree measure: 125° 30'


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.

 

The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.


Find the diameter of the sun in km supposing that it subtends an angle of 32' at the eye of an observer. Given that the distance of the sun is 91 × 106 km.

 

If the angles of a triangle are in A.P., then the measures of one of the angles in radians is


The angle between the minute and hour hands of a clock at 8:30 is


At 3:40, the hour and minute hands of a clock are inclined at


Find the value of `sqrt(3)` cosec 20° – sec 20°


If tan θ = `(-4)/3`, then sin θ is ______.


“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ” 


The value of tan1° tan2° tan3° ... tan89° is ______.


The value of cos1° cos2° cos3° ... cos179° is ______.


Which of the following is correct?

[Hint: 1 radian = `180^circ/pi = 57^circ30^'` approx]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×