हिंदी

The Angles of a Triangle Are in A.P. Such that the Greatest is 5 Times the Least. Find the Angles in Radians. - Mathematics

Advertisements
Advertisements

प्रश्न

The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.

उत्तर

Let the angles of the triangle be

\[\left( a - d \right)^\circ, \left( a \right)^\circ \text{ and }\left( a + d \right)^\circ\]
We know:
\[a - d + a + a + d = 180\]
\[ \Rightarrow 3a = 180\]
\[ \Rightarrow a = 60\]
Given:
Greatest angle= 5 x Least angle
\[\text{ or,} \frac{\text{ Greatest angle }}{\text{ Least angle }} = 5\]
\[\text{ or, }\frac{a + d}{a - d} = 5\]
\[\text{ or, }\frac{60 + d}{60 - d} = 5\]
\[\text{ or, }60 + d = 300 - 5d\]
\[\text{ or, }6d = 240\]
\[\text{ or, }d = 40\]
Hence, the angles are
\[\left( a - d \right)^\circ, \left( a \right)^\circ \text{ and }\left( a + d \right)^\circ\], i.e.,
\[20^\circ, 60^\circ \text{ and }100^\circ\], respectively.
∴ Angles of the triangle in radians = \[\left( 20 \times \frac{\pi}{180} \right), \left( 60 \times \frac{\pi}{180} \right) \text{ and }\left( 100 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{9}, \frac{\pi}{3} \text{ and }\frac{5\pi}{9}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Measurement of Angles - Exercise 4.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 4 Measurement of Angles
Exercise 4.1 | Q 9 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the radian measure corresponding to the following degree measure:

25°


Find the radian measure corresponding to the following degree measure:

– 47° 30'


Find the radian measure corresponding to the following degree measure:

240°


A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm

(Use `pi = 22/7`)


If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

10 cm


Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]


Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]


Find the radian measure corresponding to the following degree measure: −56°


Find the radian measure corresponding to the following degree measure: 135°


Find the radian measure corresponding to the following degree measure: 7° 30'


One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.


Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.

 

The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.

 

Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.

 

The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.


Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.


If D, G and R denote respectively the number of degrees, grades and radians in an angle, the 


The angle between the minute and hour hands of a clock at 8:30 is


If OP makes 4 revolutions in one second, the angular velocity in radians per second is


A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is


The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\]  radian at the centre is

 

A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. Find the angle in degrees which is subtended at the centre of hoop.


Find the value of `sqrt(3)` cosec 20° – sec 20°


Find the value of tan 9° – tan 27° – tan 63° + tan 81°


Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`


“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ” 


The value of tan1° tan2° tan3° ... tan89° is ______.


The value of cos1° cos2° cos3° ... cos179° is ______.


State whether the statement is True or False? Also give justification.

`cos  (2pi)/15 cos  (4pi)/15 cos  (8pi)/15 cos  (16pi)/15 = 1/16`


State whether the statement is True or False? Also give justification.

One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×