हिंदी

One Angle of a Triangle 2 3 X Grades and Another is 3 2 X Degrees While the Third is π X 75 Radians. Express All the Angles in Degrees. - Mathematics

Advertisements
Advertisements

प्रश्न

One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.

उत्तर

One angle of the triangle = \[\frac{2}{3}x \text{ grad }\]
\[= \left( \frac{2}{3}x \times \frac{9}{10} \right)^\circ\left[ \because 1 \text{ grad }= \left( \frac{9}{10} \right)^\circ\right]\]
\[ = \left( \frac{3}{5}x \right)^\circ\]
Another angle = \[\left( \frac{3}{2}x \right)^\circ\]
\[\because 1\text{ radian }= \left( \frac{180}{\pi} \right)^\circ\]
\[\text{ Third angle of the triangle }= \frac{x\pi}{75}\text{ rad }\]
\[ = \left( \frac{180}{\pi} \times \frac{x\pi}{75} \right)^\circ\]
\[ = \left( \frac{12}{5}x \right)^\circ\]
Now,
\[\frac{3}{5}x + \frac{3}{2}x + \frac{12}{5}x = 180 \text{ (Angle sum property) }\]
\[ \Rightarrow \frac{6x + 15x + 24x}{10} = 180\]
\[ \Rightarrow \frac{45x}{10} = 180\]
\[ \Rightarrow x = 40\]
Thus, the angles are: 
\[\left( \frac{3}{5}x \right)^\circ= 24^\circ\]
\[\left( \frac{3}{2}x \right)^\circ = 60^\circ \]
\[ \left( \frac{12x}{5} \right)^\circ= 96^\circ\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Measurement of Angles - Exercise 4.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 4 Measurement of Angles
Exercise 4.1 | Q 4 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the radian measure corresponding to the following degree measure:

– 47° 30'


Find the degree measures corresponding to the following radian measures (Use `pi = 22/7`)

`(5pi)/3`


Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).

`(7pi)/6`


In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.


If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

15 cm


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

21 cm


Find the degree measure corresponding to the following radian measure: 
 11c


Find the degree measure corresponding to the following radian measure: 
 1c


Find the radian measure corresponding to the following degree measure: 35°


Find the radian measure corresponding to the following degree measure: 135°


Find the radian measure corresponding to the following degree measure: −300°


Find the radian measure corresponding to the following degree measure: 7° 30'


Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.

 

The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.


The number of sides of two regular polygons are as 5 : 4 and the difference between their angles is 9°. Find the number of sides of the polygons.

 

Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.

 

A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?

 

Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.


Find the diameter of the sun in km supposing that it subtends an angle of 32' at the eye of an observer. Given that the distance of the sun is 91 × 106 km.

 

If D, G and R denote respectively the number of degrees, grades and radians in an angle, the 


The angle between the minute and hour hands of a clock at 8:30 is


If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is


A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is


Find the value of `sqrt(3)` cosec 20° – sec 20°


If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ


Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`


The value of tan1° tan2° tan3° ... tan89° is ______.


Which of the following is correct?

[Hint: 1 radian = `180^circ/pi = 57^circ30^'` approx]


State whether the statement is True or False? Also give justification.

The equality sinA + sin2A + sin3A = 3 holds for some real value of A.


State whether the statement is True or False? Also give justification.

Sin10° is greater than cos10°


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×