Advertisements
Advertisements
प्रश्न
Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.
उत्तर
\[\text{ Sum of the interior angles of the polygon }= \left( n - 2 \right)\pi\]
Number of sides in the pentagon = 5
\[ \therefore \text{ Sum of the interior angles of the pentagon }= \left( 5 - 2 \right)\pi = 3\pi\]
\[\text{ Each angle of the pentagon }= \frac{\text{Sum of the interior angles of the polygon}}{\text{Number of sides}} = \frac{3\pi}{5}\text{ rad }\]
\[\text{ Each angle of the pentagon }= \left( \frac{3\pi}{5} \times \frac{180}{\pi} \right)^\circ= 108^\circ\]
APPEARS IN
संबंधित प्रश्न
Find the radian measure corresponding to the following degree measure:
240°
Find the radian measure corresponding to the following degree measure:
520°
Find the degree measure corresponding to the following radian measure (Use `pi = 22/7`)
-4
In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
21 cm
Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]
Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]
Find the degree measure corresponding to the following radian measure:
\[\left( \frac{18\pi}{5} \right)\]
Find the degree measure corresponding to the following radian measure:
(−3)c
Find the radian measure corresponding to the following degree measure:
300°
Find the radian measure corresponding to the following degree measure: 35°
Find the radian measure corresponding to the following degree measure: 7° 30'
Find the radian measure corresponding to the following degree measure: 125° 30'
The difference between the two acute angles of a right-angled triangle is \[\frac{2\pi}{5}\] radians. Express the angles in degrees.
One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.
Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.
The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.
The number of sides of two regular polygons are as 5 : 4 and the difference between their angles is 9°. Find the number of sides of the polygons.
A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?
Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.
The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.
A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?
Find the diameter of the sun in km supposing that it subtends an angle of 32' at the eye of an observer. Given that the distance of the sun is 91 × 106 km.
If D, G and R denote respectively the number of degrees, grades and radians in an angle, the
If the angles of a triangle are in A.P., then the measures of one of the angles in radians is
At 3:40, the hour and minute hands of a clock are inclined at
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is
A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is
The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\] radian at the centre is
The value of tan1° tan2° tan3° ... tan89° is ______.
State whether the statement is True or False? Also give justification.
The equality sinA + sin2A + sin3A = 3 holds for some real value of A.
State whether the statement is True or False? Also give justification.
One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.