हिंदी

A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds? - Mathematics

Advertisements
Advertisements

प्रश्न

A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?

 

उत्तर

Time = 10 seconds
Speed = \[66 km/h = \frac{66 \times 1000}{3600}m/s\]
We know:
\[\text{ Speed }= \frac{\text{ Distance }}{\text{ Time }}\]
\[ \Rightarrow \frac{66 \times 1000}{3600} = \frac{\text{ Distance }}{\text{ Time }}\]
\[ \Rightarrow\text{ Distance }= \frac{66 \times 1000}{3600} \times 10 = \frac{1100}{6} m\]
Now,
Radius of the curve = 1500 m
\[\therefore \theta = \frac{\text{ Arc }}{\text{Radius}}\]
\[ = \frac{\frac{1100}{6}}{1500}\]
\[ = \frac{1100}{1500 \times 6} = \frac{11}{90}\text{ radian}\]
So, the train will turn
\[\frac{11}{90}\] radian in 10 seconds.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Measurement of Angles - Exercise 4.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 4 Measurement of Angles
Exercise 4.1 | Q 16 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the radian measure corresponding to the following degree measure:

– 47° 30'


Find the radian measure corresponding to the following degree measure:

240°


Find the radian measure corresponding to the following degree measure:

520°


Find the degree measure corresponding to the following radian measure `(use  pi = 22/7)`

`11/16`


Find the degree measure corresponding to the following radian measure (Use `pi = 22/7`)

-4


Find the degree measures corresponding to the following radian measures (Use `pi = 22/7`)

`(5pi)/3`


Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).

`(7pi)/6`


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm

(Use `pi = 22/7`)


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

10 cm


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

15 cm


Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]


Find the degree measure corresponding to the following radian measure:
\[\left( \frac{18\pi}{5} \right)\]


Find the degree measure corresponding to the following radian measure: 
(−3)c


Find the degree measure corresponding to the following radian measure: 
 11c


Find the radian measure corresponding to the following degree measure: −56°


Find the radian measure corresponding to the following degree measure: 135°


Find the radian measure corresponding to the following degree measure: −300°


The difference between the two acute angles of a right-angled triangle is \[\frac{2\pi}{5}\] radians. Express the angles in degrees.

 

 


Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.


The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.

 

The number of sides of two regular polygons are as 5 : 4 and the difference between their angles is 9°. Find the number of sides of the polygons.

 

A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?

 

Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.


If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.


The angle between the minute and hour hands of a clock at 8:30 is


At 3:40, the hour and minute hands of a clock are inclined at


If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ


Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`


State whether the statement is True or False? Also give justification.

Sin10° is greater than cos10°


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×