Advertisements
Advertisements
प्रश्न
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm
(Use `pi = 22/7`)
उत्तर
Let O be the centre, and AB be the arc length of the circle.
l = AB = 22 cm
r = OA = OB = 100 cm
∵ arc = radius × angle
Where arc, l = 22 cm radius
radius r = 100 cm
22 = 100 × θ
θ = `22/100` radian
= `22/100xx180/pi` degree
= `22/100xx180/22xx7` degree
= `63/5` degree
= 12° 36'
APPEARS IN
संबंधित प्रश्न
Find the radian measure corresponding to the following degree measure:
– 47° 30'
Find the degree measure corresponding to the following radian measure (Use `pi = 22/7`)
-4
Find the degree measures corresponding to the following radian measures (Use `pi = 22/7`)
`(5pi)/3`
Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).
`(7pi)/6`
If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
10 cm
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
15 cm
Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]
Find the degree measure corresponding to the following radian measure:
\[\left( \frac{18\pi}{5} \right)\]
Find the degree measure corresponding to the following radian measure:
1c
Find the radian measure corresponding to the following degree measure: 35°
Find the radian measure corresponding to the following degree measure: −56°
Find the radian measure corresponding to the following degree measure: −300°
Find the radian measure corresponding to the following degree measure: 7° 30'
Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.
The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.
The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.
Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.
A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?
A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?
Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.
The angle between the minute and hour hands of a clock at 8:30 is
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is
If OP makes 4 revolutions in one second, the angular velocity in radians per second is
A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is
A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. Find the angle in degrees which is subtended at the centre of hoop.
If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ
Find the value of tan 9° – tan 27° – tan 63° + tan 81°
Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ”
The value of tan1° tan2° tan3° ... tan89° is ______.
The value of cos1° cos2° cos3° ... cos179° is ______.
Which of the following is correct?
[Hint: 1 radian = `180^circ/pi = 57^circ30^'` approx]