हिंदी

Find the Radian Measure Corresponding to the Following Degree Measure: −56° - Mathematics

Advertisements
Advertisements

प्रश्न

Find the radian measure corresponding to the following degree measure: −56°

उत्तर

We have:
\[180^\circ = \pi \text{ rad }\]
\[ \therefore 1^\circ = \frac{\pi}{180} \text{ rad }\]
\[ - 56^\circ\]
\[ = - \left( 56 \times \frac{\pi}{180} \right)\]
\[ = - \frac{14\pi}{45} \text{ rad }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Measurement of Angles - Exercise 4.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 4 Measurement of Angles
Exercise 4.1 | Q 2.3 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the radian measure corresponding to the following degree measure:

25°


Find the radian measure corresponding to the following degree measure:

240°


Find the radian measure corresponding to the following degree measure:

520°


Find the degree measure corresponding to the following radian measure `(use  pi = 22/7)`

`11/16`


Find the degree measure corresponding to the following radian measure (Use `pi = 22/7`)

-4


Find the degree measures corresponding to the following radian measures (Use `pi = 22/7`)

`(5pi)/3`


Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).

`(7pi)/6`


A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?


In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.


If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

10 cm


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

21 cm


Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]


Find the degree measure corresponding to the following radian measure:
\[\left( \frac{18\pi}{5} \right)\]


Find the radian measure corresponding to the following degree measure: 135°


Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.

 

A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?

 

Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.

 

A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?

 

The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.


A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?

 

Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.


If D, G and R denote respectively the number of degrees, grades and radians in an angle, the 


If the angles of a triangle are in A.P., then the measures of one of the angles in radians is


If OP makes 4 revolutions in one second, the angular velocity in radians per second is


If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ


Find the value of tan 9° – tan 27° – tan 63° + tan 81°


Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`


If tan θ = `(-4)/3`, then sin θ is ______.


“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ” 


State whether the statement is True or False? Also give justification.

The equality sinA + sin2A + sin3A = 3 holds for some real value of A.


State whether the statement is True or False? Also give justification.

`cos  (2pi)/15 cos  (4pi)/15 cos  (8pi)/15 cos  (16pi)/15 = 1/16`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×