हिंदी

If the Angles of a Triangle Are in A.P., Then the Measures of One of the Angles in Radians is - Mathematics

Advertisements
Advertisements

प्रश्न

If the angles of a triangle are in A.P., then the measures of one of the angles in radians is

विकल्प

  • \[\frac{\pi}{6}\]

     

  • \[\frac{\pi}{3}\]

     

  • \[\frac{\pi}{2}\]

     

  • \[\frac{2\pi}{3}\]

     

MCQ

उत्तर

\[\frac{\pi}{3}\]
Let the angles of the triangle be

\[\left( a - d \right)^\circ, \left( a \right)^\circ \text{ and }\left( a + d \right)^\circ\]
Thus, we have:
\[a - d + a + a + d = 180\]
\[ \Rightarrow 3a = 180\]
\[ \Rightarrow a = 60\]
Hence, the angles are
\[\left( a - d \right)^\circ, \left( a \right)^\circ\text{ and }\left( a + d \right)^\circ\]
\[\left( 60 - d \right)^\circ, 60^\circ\text{ and }\left( 60 + d \right)^\circ\]
60° is the only angle which is independent of d.
∴ One of the angles of the triangle (in radians) = \[\left( 60 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Measurement of Angles - Exercise 4.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 4 Measurement of Angles
Exercise 4.2 | Q 2 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the radian measure corresponding to the following degree measure:

25°


Find the radian measure corresponding to the following degree measure:

– 47° 30'


Find the radian measure corresponding to the following degree measure:

520°


Find the degree measures corresponding to the following radian measures (Use `pi = 22/7`)

`(5pi)/3`


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm

(Use `pi = 22/7`)


In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

21 cm


Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]


Find the degree measure corresponding to the following radian measure: 
(−3)c


Find the degree measure corresponding to the following radian measure: 
 11c


Find the degree measure corresponding to the following radian measure: 
 1c


Find the radian measure corresponding to the following degree measure: −300°


Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.

 

The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.


A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?

 

A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?

 

If OP makes 4 revolutions in one second, the angular velocity in radians per second is


A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is


A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. Find the angle in degrees which is subtended at the centre of hoop.


Find the value of `sqrt(3)` cosec 20° – sec 20°


If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ


Find the value of tan 9° – tan 27° – tan 63° + tan 81°


If tan θ = `(-4)/3`, then sin θ is ______.


The value of tan1° tan2° tan3° ... tan89° is ______.


The value of cos1° cos2° cos3° ... cos179° is ______.


Which of the following is correct?

[Hint: 1 radian = `180^circ/pi = 57^circ30^'` approx]


State whether the statement is True or False? Also give justification.

Sin10° is greater than cos10°


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×