Advertisements
Advertisements
प्रश्न
If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ
उत्तर
We have
`sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta)) = (1 - sin theta)/sqrt(1 - sin^2theta) + (1 + sin theta)/sqrt(1 - sin^2theta)`
= `2/sqrt(cos^2theta)`
= `2/|cos theta|` .....(Since `sqrt(alpha^2)` = |α| for every real number α)
Given that θ lies in the second quadrant
So |cos θ| = – cos θ .....(Since cos θ < 0).
Hence, the required value of the expression is `2/(-costheta) = - 2 sectheta`
APPEARS IN
संबंधित प्रश्न
Find the radian measure corresponding to the following degree measure:
240°
Find the radian measure corresponding to the following degree measure:
520°
Find the degree measure corresponding to the following radian measure `(use pi = 22/7)`
`11/16`
Find the degree measures corresponding to the following radian measures (Use `pi = 22/7`)
`(5pi)/3`
Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).
`(7pi)/6`
If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
15 cm
Find the degree measure corresponding to the following radian measure:
\[\left( \frac{18\pi}{5} \right)\]
Find the radian measure corresponding to the following degree measure: 135°
Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.
Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are
Angles of the quadrilateral in radians =
Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.
Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.
If D, G and R denote respectively the number of degrees, grades and radians in an angle, the
If the angles of a triangle are in A.P., then the measures of one of the angles in radians is
At 3:40, the hour and minute hands of a clock are inclined at
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is
A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is
A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. Find the angle in degrees which is subtended at the centre of hoop.
“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ”
The value of cos1° cos2° cos3° ... cos179° is ______.
State whether the statement is True or False? Also give justification.
Sin10° is greater than cos10°
State whether the statement is True or False? Also give justification.
One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.