Advertisements
Advertisements
प्रश्न
If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.
उत्तर
Let r1, r2 and 01, 02 be the radii and angles subtended at the centre of two circles, respectively.
Let its radius = r1
l = r1θ1
= r1 `pi/3`
∴ r1 = `(3l)/pi` …(i)
For the second circle,
Let radius = r2
Arc length = l
The angle made by the arc at the centre, θ2 = 75°
= `75 xx π/180` radians
= `(5π)/12` radians
r2 = `(12l)/(5π)`
On dividing equation (i) by equation (ii)
`r^1/r^2 = (3l)/π + (12l)/(5π)`
= `(3l)/πxx(5π)/(12l)` = 5 : 4.
APPEARS IN
संबंधित प्रश्न
Find the radian measure corresponding to the following degree measure:
240°
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm
(Use `pi = 22/7`)
Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]
Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]
Find the degree measure corresponding to the following radian measure:
(−3)c
Find the degree measure corresponding to the following radian measure:
11c
Find the radian measure corresponding to the following degree measure: −56°
Find the radian measure corresponding to the following degree measure: 7° 30'
Find the radian measure corresponding to the following degree measure: 125° 30'
One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.
Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.
Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are
Angles of the quadrilateral in radians =
The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.
The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.
The number of sides of two regular polygons are as 5 : 4 and the difference between their angles is 9°. Find the number of sides of the polygons.
A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?
A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?
Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.
The angle between the minute and hour hands of a clock at 8:30 is
At 3:40, the hour and minute hands of a clock are inclined at
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is
The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\] radian at the centre is
Find the value of `sqrt(3)` cosec 20° – sec 20°
Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
If tan θ = `(-4)/3`, then sin θ is ______.
“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ”
The value of tan1° tan2° tan3° ... tan89° is ______.
The value of cos1° cos2° cos3° ... cos179° is ______.
State whether the statement is True or False? Also give justification.
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`
State whether the statement is True or False? Also give justification.
One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.