English

If θ lies in the second quadrant, then show that 1-sinθ1+sinθ+1+sinθ1-sinθ = −2sec θ - Mathematics

Advertisements
Advertisements

Question

If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ

Sum

Solution

We have

`sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta)) = (1 - sin theta)/sqrt(1 - sin^2theta) + (1 + sin theta)/sqrt(1 - sin^2theta)`

= `2/sqrt(cos^2theta)`

= `2/|cos theta|`  .....(Since `sqrt(alpha^2)` = |α| for every real number α)

Given that θ lies in the second quadrant

So |cos θ| = – cos θ .....(Since cos θ < 0).

Hence, the required value of the expression is `2/(-costheta) = - 2 sectheta`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Solved Examples [Page 41]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Solved Examples | Q 4 | Page 41

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the radian measure corresponding to the following degree measure:

25°


Find the degree measure corresponding to the following radian measure `(use  pi = 22/7)`

`11/16`


Find the degree measure corresponding to the following radian measure (Use `pi = 22/7`)

-4


Find the degree measures corresponding to the following radian measures (Use `pi = 22/7`)

`(5pi)/3`


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm

(Use `pi = 22/7`)


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

10 cm


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

21 cm


Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]


Find the radian measure corresponding to the following degree measure: −56°


Find the radian measure corresponding to the following degree measure: −300°


Find the radian measure corresponding to the following degree measure: 125° 30'


Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.

 

A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?

 

A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?

 

The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.


If the angles of a triangle are in A.P., then the measures of one of the angles in radians is


At 3:40, the hour and minute hands of a clock are inclined at


If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is


The value of cos1° cos2° cos3° ... cos179° is ______.


State whether the statement is True or False? Also give justification.

Sin10° is greater than cos10°


State whether the statement is True or False? Also give justification.

`cos  (2pi)/15 cos  (4pi)/15 cos  (8pi)/15 cos  (16pi)/15 = 1/16`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×