Advertisements
Advertisements
Question
Find the value of tan 9° – tan 27° – tan 63° + tan 81°
Solution
We have tan 9° – tan 27° – tan 63° + tan 81°
= tan 9° + tan 81° – tan 27° – tan 63°
= tan 9° + tan (90° – 9°) – tan 27° – tan (90° – 27°)
= tan 9° + cot 9° – (tan 27° + cot 27°) .....(1)
Also tan 9° + cot 9° = `1/(sin 9^circ cos 9^circ)`
= `2/(sin 18^circ)` .....(2)
Similarly, tan 27° + cot 27° = `1/(sin 27^circ cos 27^circ)`
= `2/sin54^circ`
= `2/cos36^circ` .....(3)
Using (2) and (3) in (1), we get
tan 9° – tan 27° – tan 63° + tan 81° = `2/(sin18^circ) - 2/(cos36^circ)`
= `(2 xx 4)/(sqrt(5) - 1)`
= `(2 xx 4)/(sqrt(5) + 1)`
= 4
APPEARS IN
RELATED QUESTIONS
Find the radian measure corresponding to the following degree measure:
25°
Find the radian measure corresponding to the following degree measure:
– 47° 30'
Find the radian measure corresponding to the following degree measure:
520°
Find the degree measures corresponding to the following radian measures (Use `pi = 22/7`)
`(5pi)/3`
Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).
`(7pi)/6`
If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.
Find the degree measure corresponding to the following radian measure:
(−3)c
Find the degree measure corresponding to the following radian measure:
11c
Find the radian measure corresponding to the following degree measure: 35°
Find the radian measure corresponding to the following degree measure: −56°
Find the radian measure corresponding to the following degree measure: 135°
Find the radian measure corresponding to the following degree measure: −300°
Find the radian measure corresponding to the following degree measure: 125° 30'
The difference between the two acute angles of a right-angled triangle is \[\frac{2\pi}{5}\] radians. Express the angles in degrees.
Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.
Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are
Angles of the quadrilateral in radians =
The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.
The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.
The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.
The number of sides of two regular polygons are as 5 : 4 and the difference between their angles is 9°. Find the number of sides of the polygons.
Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.
The angle between the minute and hour hands of a clock at 8:30 is
A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is
Find the value of `sqrt(3)` cosec 20° – sec 20°
The value of tan1° tan2° tan3° ... tan89° is ______.
State whether the statement is True or False? Also give justification.
Sin10° is greater than cos10°