English

Find the value of tan 9° – tan 27° – tan 63° + tan 81° - Mathematics

Advertisements
Advertisements

Question

Find the value of tan 9° – tan 27° – tan 63° + tan 81°

Sum

Solution

We have tan 9° – tan 27° – tan 63° + tan 81°

= tan 9° + tan 81° – tan 27° – tan 63°

= tan 9° + tan (90° – 9°) – tan 27° – tan (90° – 27°)

= tan 9° + cot 9° – (tan 27° + cot 27°)   .....(1)

Also tan 9° + cot 9° = `1/(sin 9^circ cos 9^circ)`

= `2/(sin 18^circ)`  .....(2)

Similarly, tan 27° + cot 27° = `1/(sin 27^circ cos 27^circ)`

= `2/sin54^circ`

= `2/cos36^circ`  .....(3)

Using (2) and (3) in (1), we get

tan 9° – tan 27° – tan 63° + tan 81° = `2/(sin18^circ) - 2/(cos36^circ)`

= `(2 xx 4)/(sqrt(5) - 1)`

= `(2 xx 4)/(sqrt(5) + 1)`

= 4

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Solved Examples [Page 41]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Solved Examples | Q 5 | Page 41

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the radian measure corresponding to the following degree measure:

25°


Find the radian measure corresponding to the following degree measure:

– 47° 30'


Find the radian measure corresponding to the following degree measure:

520°


Find the degree measures corresponding to the following radian measures (Use `pi = 22/7`)

`(5pi)/3`


Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).

`(7pi)/6`


If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.


Find the degree measure corresponding to the following radian measure: 
(−3)c


Find the degree measure corresponding to the following radian measure: 
 11c


Find the radian measure corresponding to the following degree measure: 35°


Find the radian measure corresponding to the following degree measure: −56°


Find the radian measure corresponding to the following degree measure: 135°


Find the radian measure corresponding to the following degree measure: −300°


Find the radian measure corresponding to the following degree measure: 125° 30'


The difference between the two acute angles of a right-angled triangle is \[\frac{2\pi}{5}\] radians. Express the angles in degrees.

 

 


Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.

 

The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.

 

The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.


The number of sides of two regular polygons are as 5 : 4 and the difference between their angles is 9°. Find the number of sides of the polygons.

 

Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.

 

Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.


The angle between the minute and hour hands of a clock at 8:30 is


A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is


Find the value of `sqrt(3)` cosec 20° – sec 20°


The value of tan1° tan2° tan3° ... tan89° is ______.


State whether the statement is True or False? Also give justification.

Sin10° is greater than cos10°


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×