English

Find the radian measure corresponding to the following degree measure: 520° - Mathematics

Advertisements
Advertisements

Question

Find the radian measure corresponding to the following degree measure:

520°

Sum

Solution

We know that 180° = π radian

∵ 180° = π radian
520° = `pi/180xx 520  "radian" = (26pi)/9  "radian"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise 3.1 [Page 54]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise 3.1 | Q 1.4 | Page 54

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the radian measure corresponding to the following degree measure:

– 47° 30'


Find the radian measure corresponding to the following degree measure:

240°


Find the degree measure corresponding to the following radian measure (Use `pi = 22/7`)

-4


Find the degree measures corresponding to the following radian measures (Use `pi = 22/7`)

`(5pi)/3`


Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).

`(7pi)/6`


A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm

(Use `pi = 22/7`)


In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.


If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

10 cm


Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]


Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]


Find the radian measure corresponding to the following degree measure:
300°


Find the radian measure corresponding to the following degree measure: 35°


Find the radian measure corresponding to the following degree measure: 7° 30'


Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.

 

A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?

 

Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.

 

A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?

 

If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.


If D, G and R denote respectively the number of degrees, grades and radians in an angle, the 


The angle between the minute and hour hands of a clock at 8:30 is


The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\]  radian at the centre is

 

Find the value of `sqrt(3)` cosec 20° – sec 20°


Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`


The value of tan1° tan2° tan3° ... tan89° is ______.


The value of cos1° cos2° cos3° ... cos179° is ______.


Which of the following is correct?

[Hint: 1 radian = `180^circ/pi = 57^circ30^'` approx]


State whether the statement is True or False? Also give justification.

Sin10° is greater than cos10°


State whether the statement is True or False? Also give justification.

`cos  (2pi)/15 cos  (4pi)/15 cos  (8pi)/15 cos  (16pi)/15 = 1/16`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×