Advertisements
Advertisements
Question
If D, G and R denote respectively the number of degrees, grades and radians in an angle, the
Options
- \[\frac{D}{90} = \frac{G}{100} = \frac{R}{\pi}\]
- \[\frac{D}{90} = \frac{G}{100} = \frac{R}{\pi}\]
- \[\frac{D}{90} = \frac{G}{100} = \frac{2R}{\pi}\]
- \[\frac{D}{90} = \frac{G}{100} = \frac{R}{2\pi}\]
Solution
\[\frac{D}{90} = \frac{G}{100} = \frac{2R}{\pi}\]
Explanation:
Let θ be the angle which is measure in degree, radian and grade.
We know that 90° = 1 right angle
⇒ 1° = `1/90` right angle
⇒ D° = `"D"/90` right angle
⇒ `theta = "D"/90` right angle ...(1)
Also we know that, π radians = 2 right angles
⇒ 1C = `2/pi` right angle
⇒ R = `2/pi xx` R right angle
⇒ `theta = 2/pi xx` R right angle ...(2)
Also we know that, 100 grades = 1 right angle
⇒ 1 grade = `1/100` right angle
⇒ G grade = `"G"/100` right angle
⇒ `theta = "G"/100` right angles ...(3)
From (1), (2) and (3)
∴ `"D"/90 = "2R"/pi = "G"/100`
APPEARS IN
RELATED QUESTIONS
Find the radian measure corresponding to the following degree measure:
– 47° 30'
Find the radian measure corresponding to the following degree measure:
240°
A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm
(Use `pi = 22/7`)
In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.
Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]
Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]
Find the degree measure corresponding to the following radian measure:
\[\left( \frac{18\pi}{5} \right)\]
Find the degree measure corresponding to the following radian measure:
(−3)c
Find the degree measure corresponding to the following radian measure:
11c
Find the degree measure corresponding to the following radian measure:
1c
Find the radian measure corresponding to the following degree measure: −56°
Find the radian measure corresponding to the following degree measure: −300°
Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are
Angles of the quadrilateral in radians =
The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.
Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.
The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.
Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.
If the angles of a triangle are in A.P., then the measures of one of the angles in radians is
The angle between the minute and hour hands of a clock at 8:30 is
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is
If OP makes 4 revolutions in one second, the angular velocity in radians per second is
The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\] radian at the centre is
Find the value of tan 9° – tan 27° – tan 63° + tan 81°
Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ”
The value of tan1° tan2° tan3° ... tan89° is ______.
State whether the statement is True or False? Also give justification.
Sin10° is greater than cos10°
State whether the statement is True or False? Also give justification.
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`
State whether the statement is True or False? Also give justification.
One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.