Advertisements
Advertisements
Question
Find the radian measure corresponding to the following degree measure:
240°
Solution
240°
We know that 180° = π radian
240° = `pi/180xx 240` radians = `(4pi)/3` radians
APPEARS IN
RELATED QUESTIONS
Find the degree measures corresponding to the following radian measures (Use `pi = 22/7`)
`(5pi)/3`
Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).
`(7pi)/6`
A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm
(Use `pi = 22/7`)
If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
10 cm
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
15 cm
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
21 cm
Find the degree measure corresponding to the following radian measure:
1c
Find the radian measure corresponding to the following degree measure: 35°
Find the radian measure corresponding to the following degree measure: −56°
Find the radian measure corresponding to the following degree measure: 7° 30'
The difference between the two acute angles of a right-angled triangle is \[\frac{2\pi}{5}\] radians. Express the angles in degrees.
One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.
Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.
The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.
The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.
Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.
Find the diameter of the sun in km supposing that it subtends an angle of 32' at the eye of an observer. Given that the distance of the sun is 91 × 106 km.
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.
If D, G and R denote respectively the number of degrees, grades and radians in an angle, the
If the angles of a triangle are in A.P., then the measures of one of the angles in radians is
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is
Find the value of tan 9° – tan 27° – tan 63° + tan 81°
The value of tan1° tan2° tan3° ... tan89° is ______.
Which of the following is correct?
[Hint: 1 radian = `180^circ/pi = 57^circ30^'` approx]
State whether the statement is True or False? Also give justification.
The equality sinA + sin2A + sin3A = 3 holds for some real value of A.
State whether the statement is True or False? Also give justification.
One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.