English

Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length 15 cm - Mathematics

Advertisements
Advertisements

Question

Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

15 cm

Sum

Solution

We know:
Radius = 75 cm
Length of the arc = 15 cm

Now,

\[\theta = \frac{\text{Arc }}{\text{Radius}}\]

\[ = \frac{15}{75}\]

\[ = \frac{1}{5}\text{ radian }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise 3.1 [Page 55]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise 3.1 | Q 7.2 | Page 55
RD Sharma Mathematics [English] Class 11
Chapter 4 Measurement of Angles
Exercise 4.1 | Q 14.2 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the radian measure corresponding to the following degree measure:

25°


Find the radian measure corresponding to the following degree measure:

– 47° 30'


Find the degree measure corresponding to the following radian measure `(use  pi = 22/7)`

`11/16`


Find the degree measure corresponding to the following radian measure (Use `pi = 22/7`)

-4


A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm

(Use `pi = 22/7`)


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

10 cm


Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]


Find the degree measure corresponding to the following radian measure:
\[\left( \frac{18\pi}{5} \right)\]


Find the degree measure corresponding to the following radian measure: 
(−3)c


Find the radian measure corresponding to the following degree measure: 35°


Find the radian measure corresponding to the following degree measure: −300°


Find the radian measure corresponding to the following degree measure: 125° 30'


One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.


Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.

 

The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.

 

The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.


A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?

 

Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.

 

Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.


Find the diameter of the sun in km supposing that it subtends an angle of 32' at the eye of an observer. Given that the distance of the sun is 91 × 106 km.

 

If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.


At 3:40, the hour and minute hands of a clock are inclined at


If OP makes 4 revolutions in one second, the angular velocity in radians per second is


A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is


The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\]  radian at the centre is

 

A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. Find the angle in degrees which is subtended at the centre of hoop.


If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ


If tan θ = `(-4)/3`, then sin θ is ______.


The value of tan1° tan2° tan3° ... tan89° is ______.


State whether the statement is True or False? Also give justification.

The equality sinA + sin2A + sin3A = 3 holds for some real value of A.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×