English

Find the Magnitude, in Radians and Degrees, of the Interior Angle of a Regular Heptagon. - Mathematics

Advertisements
Advertisements

Question

Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.

Solution

\[\text{ Sum of the interior angles of the polygon }= \left( n - 2 \right)\pi\]
Number of sides in the heptagon = 7 
\[ \therefore\text{ Sum of the interior angles of the heptagon }= \left( 7 - 2 \right)\pi = 5\pi\]
\[\text{ Each angle of the heptagon }= \frac{\text{ Sum of the interior angles of the polygon}}{\text{ Number of sides}} = \frac{5\pi}{7}\text{ rad }\]
\[\text{Each angle of the heptagon }= \left( \frac{5\pi}{7} \times \frac{180}{\pi} \right)^\circ= \left( \frac{900}{7} \right)^\circ= 128^\circ 34'17 '' \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Measurement of Angles - Exercise 4.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 4 Measurement of Angles
Exercise 4.1 | Q 5.3 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the radian measure corresponding to the following degree measure:

25°


Find the degree measure corresponding to the following radian measure (Use `pi = 22/7`)

-4


Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).

`(7pi)/6`


A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?


Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]


Find the degree measure corresponding to the following radian measure: 
(−3)c


Find the degree measure corresponding to the following radian measure: 
 11c


Find the radian measure corresponding to the following degree measure:
300°


Find the radian measure corresponding to the following degree measure: 135°


Find the radian measure corresponding to the following degree measure: −300°


Find the radian measure corresponding to the following degree measure: 125° 30'


One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.


Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?

 

Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.


If D, G and R denote respectively the number of degrees, grades and radians in an angle, the 


If OP makes 4 revolutions in one second, the angular velocity in radians per second is


A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is


A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. Find the angle in degrees which is subtended at the centre of hoop.


Find the value of `sqrt(3)` cosec 20° – sec 20°


Find the value of tan 9° – tan 27° – tan 63° + tan 81°


Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`


If tan θ = `(-4)/3`, then sin θ is ______.


The value of cos1° cos2° cos3° ... cos179° is ______.


Which of the following is correct?

[Hint: 1 radian = `180^circ/pi = 57^circ30^'` approx]


State whether the statement is True or False? Also give justification.

The equality sinA + sin2A + sin3A = 3 holds for some real value of A.


State whether the statement is True or False? Also give justification.

Sin10° is greater than cos10°


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×