मराठी

Find the Magnitude, in Radians and Degrees, of the Interior Angle of a Regular Heptagon. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.

उत्तर

\[\text{ Sum of the interior angles of the polygon }= \left( n - 2 \right)\pi\]
Number of sides in the heptagon = 7 
\[ \therefore\text{ Sum of the interior angles of the heptagon }= \left( 7 - 2 \right)\pi = 5\pi\]
\[\text{ Each angle of the heptagon }= \frac{\text{ Sum of the interior angles of the polygon}}{\text{ Number of sides}} = \frac{5\pi}{7}\text{ rad }\]
\[\text{Each angle of the heptagon }= \left( \frac{5\pi}{7} \times \frac{180}{\pi} \right)^\circ= \left( \frac{900}{7} \right)^\circ= 128^\circ 34'17 '' \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Measurement of Angles - Exercise 4.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 4 Measurement of Angles
Exercise 4.1 | Q 5.3 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the radian measure corresponding to the following degree measure:

520°


Find the degree measure corresponding to the following radian measure `(use  pi = 22/7)`

`11/16`


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

10 cm


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

15 cm


Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]


Find the degree measure corresponding to the following radian measure:
\[\left( \frac{18\pi}{5} \right)\]


Find the degree measure corresponding to the following radian measure: 
(−3)c


Find the radian measure corresponding to the following degree measure: −56°


The difference between the two acute angles of a right-angled triangle is \[\frac{2\pi}{5}\] radians. Express the angles in degrees.

 

 


One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.


Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.


The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.

 

The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.

 

The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.


A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?

 

Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.

 

Find the diameter of the sun in km supposing that it subtends an angle of 32' at the eye of an observer. Given that the distance of the sun is 91 × 106 km.

 

If D, G and R denote respectively the number of degrees, grades and radians in an angle, the 


At 3:40, the hour and minute hands of a clock are inclined at


If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is


If OP makes 4 revolutions in one second, the angular velocity in radians per second is


A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is


The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\]  radian at the centre is

 

A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. Find the angle in degrees which is subtended at the centre of hoop.


If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ


If tan θ = `(-4)/3`, then sin θ is ______.


“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ” 


The value of tan1° tan2° tan3° ... tan89° is ______.


The value of cos1° cos2° cos3° ... cos179° is ______.


State whether the statement is True or False? Also give justification.

Sin10° is greater than cos10°


State whether the statement is True or False? Also give justification.

One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×