Advertisements
Advertisements
प्रश्न
A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is
पर्याय
50°
210°
100°
60°
195°
उत्तर
210°
Length of the arc of radius = Circumference of the circle of radius 7 cm = \[2\pi r = 14\pi\]
Now,
Angle subtended by the arc = \[\frac{\text{ Arc }}{\text{ Radius }} = \frac{14\pi}{12} = \left( \frac{14\pi}{12} \times \frac{180}{\pi} \right)^\circ= 210^\circ\]
APPEARS IN
संबंधित प्रश्न
Find the radian measure corresponding to the following degree measure:
– 47° 30'
Find the degree measure corresponding to the following radian measure `(use pi = 22/7)`
`11/16`
Find the degree measures corresponding to the following radian measures (Use `pi = 22/7`)
`(5pi)/3`
A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm
(Use `pi = 22/7`)
If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
10 cm
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
15 cm
Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]
Find the degree measure corresponding to the following radian measure:
11c
Find the degree measure corresponding to the following radian measure:
1c
Find the radian measure corresponding to the following degree measure:
300°
Find the radian measure corresponding to the following degree measure: −56°
Find the radian measure corresponding to the following degree measure: 125° 30'
The difference between the two acute angles of a right-angled triangle is \[\frac{2\pi}{5}\] radians. Express the angles in degrees.
Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.
The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.
The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.
A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.
If the angles of a triangle are in A.P., then the measures of one of the angles in radians is
Find the value of `sqrt(3)` cosec 20° – sec 20°
If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ
Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ”
The value of tan1° tan2° tan3° ... tan89° is ______.
State whether the statement is True or False? Also give justification.
Sin10° is greater than cos10°
State whether the statement is True or False? Also give justification.
One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.