Advertisements
Advertisements
प्रश्न
The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.
उत्तर
Let the number of sides in the first polygon be 2x and the number of sides in the second polygon is x.
We know:
Angle of an n-sided regular polygon = \[\left( \frac{n - 2}{n} \right)\pi\] radian
∴ Angle of the first polygon =
\[ \Rightarrow \frac{x - 1}{x - 2} = \frac{3}{2}\]
\[ \Rightarrow 2x - 2 = 3x - 6\]
\[ \Rightarrow x = 4\]
Thus,
Number of sides in the first polygon = 2x = 8
Number of sides in the first polygon = x = 4
APPEARS IN
संबंधित प्रश्न
Find the radian measure corresponding to the following degree measure:
25°
Find the radian measure corresponding to the following degree measure:
240°
Find the degree measure corresponding to the following radian measure `(use pi = 22/7)`
`11/16`
In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.
If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.
Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]
Find the degree measure corresponding to the following radian measure:
(−3)c
Find the radian measure corresponding to the following degree measure:
300°
Find the radian measure corresponding to the following degree measure: 135°
Find the radian measure corresponding to the following degree measure: 7° 30'
Find the radian measure corresponding to the following degree measure: 125° 30'
Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.
Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are
Angles of the quadrilateral in radians =
The number of sides of two regular polygons are as 5 : 4 and the difference between their angles is 9°. Find the number of sides of the polygons.
A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?
A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.
If D, G and R denote respectively the number of degrees, grades and radians in an angle, the
If the angles of a triangle are in A.P., then the measures of one of the angles in radians is
At 3:40, the hour and minute hands of a clock are inclined at
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is
The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\] radian at the centre is
A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. Find the angle in degrees which is subtended at the centre of hoop.
Find the value of `sqrt(3)` cosec 20° – sec 20°
The value of tan1° tan2° tan3° ... tan89° is ______.
State whether the statement is True or False? Also give justification.
The equality sinA + sin2A + sin3A = 3 holds for some real value of A.
State whether the statement is True or False? Also give justification.
Sin10° is greater than cos10°