मराठी

One Angle of a Triangle 2 3 X Grades and Another is 3 2 X Degrees While the Third is π X 75 Radians. Express All the Angles in Degrees. - Mathematics

Advertisements
Advertisements

प्रश्न

One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.

उत्तर

One angle of the triangle = \[\frac{2}{3}x \text{ grad }\]
\[= \left( \frac{2}{3}x \times \frac{9}{10} \right)^\circ\left[ \because 1 \text{ grad }= \left( \frac{9}{10} \right)^\circ\right]\]
\[ = \left( \frac{3}{5}x \right)^\circ\]
Another angle = \[\left( \frac{3}{2}x \right)^\circ\]
\[\because 1\text{ radian }= \left( \frac{180}{\pi} \right)^\circ\]
\[\text{ Third angle of the triangle }= \frac{x\pi}{75}\text{ rad }\]
\[ = \left( \frac{180}{\pi} \times \frac{x\pi}{75} \right)^\circ\]
\[ = \left( \frac{12}{5}x \right)^\circ\]
Now,
\[\frac{3}{5}x + \frac{3}{2}x + \frac{12}{5}x = 180 \text{ (Angle sum property) }\]
\[ \Rightarrow \frac{6x + 15x + 24x}{10} = 180\]
\[ \Rightarrow \frac{45x}{10} = 180\]
\[ \Rightarrow x = 40\]
Thus, the angles are: 
\[\left( \frac{3}{5}x \right)^\circ= 24^\circ\]
\[\left( \frac{3}{2}x \right)^\circ = 60^\circ \]
\[ \left( \frac{12x}{5} \right)^\circ= 96^\circ\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Measurement of Angles - Exercise 4.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 4 Measurement of Angles
Exercise 4.1 | Q 4 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the radian measure corresponding to the following degree measure:

25°


Find the radian measure corresponding to the following degree measure:

240°


Find the radian measure corresponding to the following degree measure:

520°


Find the degree measure corresponding to the following radian measure (Use `pi = 22/7`)

-4


A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm

(Use `pi = 22/7`)


In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.


If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.


Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]


Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]


Find the degree measure corresponding to the following radian measure: 
(−3)c


Find the degree measure corresponding to the following radian measure: 
 11c


Find the degree measure corresponding to the following radian measure: 
 1c


Find the radian measure corresponding to the following degree measure: −56°


Find the radian measure corresponding to the following degree measure: 7° 30'


Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.

 

A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?

 

The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.


Find the diameter of the sun in km supposing that it subtends an angle of 32' at the eye of an observer. Given that the distance of the sun is 91 × 106 km.

 

If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.


At 3:40, the hour and minute hands of a clock are inclined at


If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is


Find the value of `sqrt(3)` cosec 20° – sec 20°


If tan θ = `(-4)/3`, then sin θ is ______.


“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ” 


State whether the statement is True or False? Also give justification.

Sin10° is greater than cos10°


State whether the statement is True or False? Also give justification.

`cos  (2pi)/15 cos  (4pi)/15 cos  (8pi)/15 cos  (16pi)/15 = 1/16`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×