Advertisements
Advertisements
Question
One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.
Solution
One angle of the triangle = \[\frac{2}{3}x \text{ grad }\]
\[= \left( \frac{2}{3}x \times \frac{9}{10} \right)^\circ\left[ \because 1 \text{ grad }= \left( \frac{9}{10} \right)^\circ\right]\]
\[ = \left( \frac{3}{5}x \right)^\circ\]
Another angle = \[\left( \frac{3}{2}x \right)^\circ\]
\[\because 1\text{ radian }= \left( \frac{180}{\pi} \right)^\circ\]
\[\text{ Third angle of the triangle }= \frac{x\pi}{75}\text{ rad }\]
\[ = \left( \frac{180}{\pi} \times \frac{x\pi}{75} \right)^\circ\]
\[ = \left( \frac{12}{5}x \right)^\circ\]
Now,
\[\frac{3}{5}x + \frac{3}{2}x + \frac{12}{5}x = 180 \text{ (Angle sum property) }\]
\[ \Rightarrow \frac{6x + 15x + 24x}{10} = 180\]
\[ \Rightarrow \frac{45x}{10} = 180\]
\[ \Rightarrow x = 40\]
Thus, the angles are:
\[\left( \frac{3}{5}x \right)^\circ= 24^\circ\]
\[\left( \frac{3}{2}x \right)^\circ = 60^\circ \]
\[ \left( \frac{12x}{5} \right)^\circ= 96^\circ\]
APPEARS IN
RELATED QUESTIONS
Find the radian measure corresponding to the following degree measure:
25°
Find the radian measure corresponding to the following degree measure:
240°
A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm
(Use `pi = 22/7`)
In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
10 cm
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
15 cm
Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]
Find the degree measure corresponding to the following radian measure:
(−3)c
Find the degree measure corresponding to the following radian measure:
11c
Find the radian measure corresponding to the following degree measure: −56°
Find the radian measure corresponding to the following degree measure: 135°
Find the radian measure corresponding to the following degree measure: −300°
Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.
Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are
Angles of the quadrilateral in radians =
The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.
The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.
The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.
A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?
Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.
If D, G and R denote respectively the number of degrees, grades and radians in an angle, the
The angle between the minute and hour hands of a clock at 8:30 is
At 3:40, the hour and minute hands of a clock are inclined at
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is
A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is
The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\] radian at the centre is
If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ
Find the value of tan 9° – tan 27° – tan 63° + tan 81°
“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ”
The value of cos1° cos2° cos3° ... cos179° is ______.
State whether the statement is True or False? Also give justification.
The equality sinA + sin2A + sin3A = 3 holds for some real value of A.
State whether the statement is True or False? Also give justification.
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`
State whether the statement is True or False? Also give justification.
One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.