English

Find the Degree Measure Corresponding to the Following Radian Measure: (−3)C - Mathematics

Advertisements
Advertisements

Question

Find the degree measure corresponding to the following radian measure: 
(−3)c

Solution

We have: 
\[\pi \text{ rad }= 180^\circ\]
\[ \therefore 1 \text{ rad }= \left( \frac{180}{\pi} \right)^\circ \]
\[\left( - 3 \right)^c = \left( \frac{180}{\pi} \times - 3 \right)^\circ \]
\[ = \left( \frac{180}{22} \times 7 \times - 3 \right)^\circ\]
\[ = \left( \frac{- 3780}{22} \right)^\circ\]
\[ = \left( - 171\frac{18}{22} \right)^\circ\]
\[ = \left\{ - 171^\circ \left( \frac{18}{22} \times 60 \right)^′  \right\}\]
\[ = \left\{ - 171^\circ \left( 49\frac{1}{11} \right)^′ \right\}\]
\[ = - \left\{ 171^\circ 49' \left( \frac{1}{11} \times 60 \right)^{''} \right\}\]
\[ = - \left( 171^\circ 49' 5. {45}^{''} \right) \]
\[ \approx - \left( 171^\circ 49' 5^{''} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Measurement of Angles - Exercise 4.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 4 Measurement of Angles
Exercise 4.1 | Q 1.4 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the degree measure corresponding to the following radian measure (Use `pi = 22/7`)

-4


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

10 cm


Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]


Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]


Find the degree measure corresponding to the following radian measure:
\[\left( \frac{18\pi}{5} \right)\]


Find the radian measure corresponding to the following degree measure:
300°


Find the radian measure corresponding to the following degree measure: 35°


Find the radian measure corresponding to the following degree measure: −56°


The difference between the two acute angles of a right-angled triangle is \[\frac{2\pi}{5}\] radians. Express the angles in degrees.

 

 


One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.


Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.


If D, G and R denote respectively the number of degrees, grades and radians in an angle, the 


If the angles of a triangle are in A.P., then the measures of one of the angles in radians is


The angle between the minute and hour hands of a clock at 8:30 is


At 3:40, the hour and minute hands of a clock are inclined at


A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is


The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\]  radian at the centre is

 

If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ


Find the value of tan 9° – tan 27° – tan 63° + tan 81°


Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`


If tan θ = `(-4)/3`, then sin θ is ______.


“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ” 


The value of tan1° tan2° tan3° ... tan89° is ______.


The value of cos1° cos2° cos3° ... cos179° is ______.


Which of the following is correct?

[Hint: 1 radian = `180^circ/pi = 57^circ30^'` approx]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×