English

The value of tan1° tan2° tan3° ... tan89° is ______. - Mathematics

Advertisements
Advertisements

Question

The value of tan1° tan2° tan3° ... tan89° is ______.

Options

  • 0

  • 1

  • `1/2`

  • Not defined

MCQ
Fill in the Blanks

Solution

The value of tan1° tan2° tan3° ... tan89° is 1.

Explanation:

tan1° tan2° tan3°… tan89°

= tan1° tan2° … tan45° tan(90° - 44°) tan(90° - 43°) ..…tan(90° - 1°)

= tan1° tan2° … tan45° cot44° cot43° … cot1°   ......[∵ tan(90° - θ) = cotθ]

= tan1° cot1° tan2° cot2°…tan45°… tan89° cot89°

= 1.1….1

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 55]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 34 | Page 55

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the radian measure corresponding to the following degree measure:

520°


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm

(Use `pi = 22/7`)


Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]


Find the degree measure corresponding to the following radian measure: 
 11c


Find the degree measure corresponding to the following radian measure: 
 1c


Find the radian measure corresponding to the following degree measure: 135°


Find the radian measure corresponding to the following degree measure: −300°


One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.


Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.

 

A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?

 

The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.


Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.


If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.


If the angles of a triangle are in A.P., then the measures of one of the angles in radians is


The angle between the minute and hour hands of a clock at 8:30 is


If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is


A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. Find the angle in degrees which is subtended at the centre of hoop.


Find the value of `sqrt(3)` cosec 20° – sec 20°


“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ” 


The value of cos1° cos2° cos3° ... cos179° is ______.


State whether the statement is True or False? Also give justification.

The equality sinA + sin2A + sin3A = 3 holds for some real value of A.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×