English

Find the Radian Measure Corresponding to the Following Degree Measure: 125° 30' - Mathematics

Advertisements
Advertisements

Question

Find the radian measure corresponding to the following degree measure: 125° 30'

Solution

We have:
\[180^\circ = \pi \text{ rad }\]
\[ \therefore 1^\circ = \frac{\pi}{180} \text{ rad }\]
\[ 30' = \left( \frac{1}{2} \right)^\circ \]
\[ \therefore 125^\circ  30' = \left( 125\frac{1}{2} \right)^\circ \]
\[ = \left( \frac{251}{2} \right)^\circ \]
\[ = \frac{251}{2} \times \frac{\pi}{180}\]
\[ = \frac{251\pi}{360} \text{ rad }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Measurement of Angles - Exercise 4.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 4 Measurement of Angles
Exercise 4.1 | Q 2.7 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the radian measure corresponding to the following degree measure:

25°


Find the radian measure corresponding to the following degree measure:

520°


Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).

`(7pi)/6`


A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm

(Use `pi = 22/7`)


In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.


If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

10 cm


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

15 cm


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

21 cm


Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]


Find the degree measure corresponding to the following radian measure:
\[\left( \frac{18\pi}{5} \right)\]


Find the degree measure corresponding to the following radian measure: 
 11c


Find the radian measure corresponding to the following degree measure: 35°


Find the radian measure corresponding to the following degree measure: 7° 30'


One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.


Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.


The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.


The number of sides of two regular polygons are as 5 : 4 and the difference between their angles is 9°. Find the number of sides of the polygons.

 

A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?

 

Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.

 

A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?

 

The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.


Find the diameter of the sun in km supposing that it subtends an angle of 32' at the eye of an observer. Given that the distance of the sun is 91 × 106 km.

 

If D, G and R denote respectively the number of degrees, grades and radians in an angle, the 


If the angles of a triangle are in A.P., then the measures of one of the angles in radians is


The angle between the minute and hour hands of a clock at 8:30 is


If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is


The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\]  radian at the centre is

 

“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ” 


State whether the statement is True or False? Also give justification.

Sin10° is greater than cos10°


State whether the statement is True or False? Also give justification.

One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×