Advertisements
Advertisements
प्रश्न
Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.
उत्तर
\[\text{ Sum of the interior angles of the polygon }= \left( n - 2 \right)\pi\]
Number of sides in the duodecagon = 12
\[ \therefore \text{ Sum of the interior angles of the duodecagon }= \left( 12 - 2 \right)\pi = 10\pi\]
\[\text{ Each angle of the duodecagon }= \frac{\text{ Sum of the interior angles of the polygon }}{\text{ Number of sides }} = \frac{10\pi}{12} = \frac{5\pi}{6}\text{ rad }\]
\[\text{ Each angle of duodecagon }= \left( \frac{5\pi}{6} \times \frac{180}{\pi} \right)^\circ= {150}^\circ\]
APPEARS IN
संबंधित प्रश्न
Find the radian measure corresponding to the following degree measure:
25°
Find the radian measure corresponding to the following degree measure:
520°
Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).
`(7pi)/6`
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm
(Use `pi = 22/7`)
In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.
If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.
Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]
Find the degree measure corresponding to the following radian measure:
11c
Find the radian measure corresponding to the following degree measure:
300°
Find the radian measure corresponding to the following degree measure: 135°
Find the radian measure corresponding to the following degree measure: −300°
The difference between the two acute angles of a right-angled triangle is \[\frac{2\pi}{5}\] radians. Express the angles in degrees.
Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.
The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.
The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.
A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?
The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.
A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?
Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.
If D, G and R denote respectively the number of degrees, grades and radians in an angle, the
If the angles of a triangle are in A.P., then the measures of one of the angles in radians is
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is
Find the value of tan 9° – tan 27° – tan 63° + tan 81°
If tan θ = `(-4)/3`, then sin θ is ______.
“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ”
The value of tan1° tan2° tan3° ... tan89° is ______.
Which of the following is correct?
[Hint: 1 radian = `180^circ/pi = 57^circ30^'` approx]
State whether the statement is True or False? Also give justification.
One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.