Advertisements
Advertisements
प्रश्न
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.
उत्तर
Length of the arc = 22 cm
Radius = 100 cm
Now,
\[\theta = \frac{\text{Arc}}{\text{Radius}}\]
\[ = \frac{22}{100}\]
\[ = \frac{11}{50}\text{ radian}\]
∴ Angle subtended at the centre by the arc = \[\left( \frac{11}{50} \times \frac{180}{\pi} \right)^\circ= \left( \frac{11}{5} \times \frac{18}{22} \times 7 \right)^\circ= \left( \frac{63}{5} \right)^\circ= 12^\circ 36'\]
APPEARS IN
संबंधित प्रश्न
Find the radian measure corresponding to the following degree measure:
25°
Find the radian measure corresponding to the following degree measure:
520°
Find the degree measure corresponding to the following radian measure `(use pi = 22/7)`
`11/16`
Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).
`(7pi)/6`
A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
10 cm
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
15 cm
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
21 cm
Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]
Find the degree measure corresponding to the following radian measure:
(−3)c
Find the degree measure corresponding to the following radian measure:
11c
Find the degree measure corresponding to the following radian measure:
1c
The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.
The number of sides of two regular polygons are as 5 : 4 and the difference between their angles is 9°. Find the number of sides of the polygons.
Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.
A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?
The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.
A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.
If D, G and R denote respectively the number of degrees, grades and radians in an angle, the
At 3:40, the hour and minute hands of a clock are inclined at
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is
Find the value of `sqrt(3)` cosec 20° – sec 20°
If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ
Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
The value of cos1° cos2° cos3° ... cos179° is ______.
State whether the statement is True or False? Also give justification.
The equality sinA + sin2A + sin3A = 3 holds for some real value of A.