हिंदी

If the Arcs of the Same Length in Two Circles Subtend Angles 65° and 110° at the Centre, Find the Ratio of Their Radii. - Mathematics

Advertisements
Advertisements

प्रश्न

If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.

उत्तर

Let the angles subtended at the centres by the arcs and radii of the first and second circles be \[\theta_1\text{ and }r_1\text{ and }\theta_2\text{ and }r_2\] respectively.
Thus, we have:
\[\theta_1 = 65^\circ = \left( 65 \times \frac{\pi}{180} \right)\text{ radian }\]
\[\theta_2 = 65^\circ = \left( 110 \times \frac{\pi}{180} \right)\text{ radian }\]
\[\theta_1 = \frac{l}{r_1}\]
\[\Rightarrow r_1 = \frac{l}{\left( 65 \times \frac{\pi}{180} \right)}\]
\[\theta_2 = \frac{l}{r_2}\]
\[\Rightarrow r_2 = \frac{l}{\left( 110 \times \frac{\pi}{180} \right)}\]
\[\Rightarrow \frac{r_1}{r_2} = \frac{\frac{l}{\left( 65 \times \frac{\pi}{180} \right)}}{\frac{l}{\left( 110 \times \frac{\pi}{180} \right)}} = \frac{110}{65} = \frac{22}{13}\]

⇒ r1:r2 = 22:13

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Measurement of Angles - Exercise 4.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 4 Measurement of Angles
Exercise 4.1 | Q 19 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the radian measure corresponding to the following degree measure:

– 47° 30'


Find the degree measure corresponding to the following radian measure `(use  pi = 22/7)`

`11/16`


A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm

(Use `pi = 22/7`)


If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.


Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

21 cm


Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]


Find the radian measure corresponding to the following degree measure:
300°


Find the radian measure corresponding to the following degree measure: 35°


Find the radian measure corresponding to the following degree measure: 135°


Find the radian measure corresponding to the following degree measure: −300°


Find the radian measure corresponding to the following degree measure: 7° 30'


The difference between the two acute angles of a right-angled triangle is \[\frac{2\pi}{5}\] radians. Express the angles in degrees.

 

 


One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.


Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.


Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.


Let the angles of the quadrilateral be \[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ \text{ and }\left( a + 3d \right)^\circ\]
We know: \[a - 3d + a - d + a + d + a - 2d = 360\]
\[ \Rightarrow 4a = 360\]
\[ \Rightarrow a = 90\]
We have:
Greatest angle = 120°
Now,
\[a + 3d = 120\]
\[ \Rightarrow 90 + 3d = 120\]
\[ \Rightarrow 3d = 30\]
\[ \Rightarrow d = 10\]
Hence,
\[\left( a - 3d \right)^\circ, \left( a - d \right)^\circ, \left( a + d \right)^\circ\text{ and }\left( a + 3d \right)^\circ\] are

\[60^\circ, 80^\circ, 100^\circ\text{ and }120^\circ\], respectively.
Angles of the quadrilateral in radians =
\[\left( 60 \times \frac{\pi}{180} \right), \left( 80 \times \frac{\pi}{180} \right) , \left( 100 \times \frac{\pi}{180} \right) \text{ and }\left( 120 \times \frac{\pi}{180} \right)\]
\[\frac{\pi}{3}, \frac{4\pi}{9}, \frac{5\pi}{9}\text{ and } \frac{2\pi}{3}\]
 

 


The angles of a triangle are in A.P. and the number of degrees in the least angle is to the number of degrees in the mean angle as 1 : 120. Find the angles in radians.

 

The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.


The number of sides of two regular polygons are as 5 : 4 and the difference between their angles is 9°. Find the number of sides of the polygons.

 

A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?

 

The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.


A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?

 

If D, G and R denote respectively the number of degrees, grades and radians in an angle, the 


If the angles of a triangle are in A.P., then the measures of one of the angles in radians is


The angle between the minute and hour hands of a clock at 8:30 is


A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm. The angle subtended by the arc at the centre is


Find the value of `sqrt(3)` cosec 20° – sec 20°


Find the value of tan 9° – tan 27° – tan 63° + tan 81°


If tan θ = `(-4)/3`, then sin θ is ______.


State whether the statement is True or False? Also give justification.

Sin10° is greater than cos10°


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×