Advertisements
Advertisements
प्रश्न
A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?
उत्तर
Time = 10 seconds
Speed = \[66 km/h = \frac{66 \times 1000}{3600}m/s\]
We know:
\[\text{ Speed }= \frac{\text{ Distance }}{\text{ Time }}\]
\[ \Rightarrow \frac{66 \times 1000}{3600} = \frac{\text{ Distance }}{\text{ Time }}\]
\[ \Rightarrow\text{ Distance }= \frac{66 \times 1000}{3600} \times 10 = \frac{1100}{6} m\]
Now,
Radius of the curve = 1500 m
\[\therefore \theta = \frac{\text{ Arc }}{\text{Radius}}\]
\[ = \frac{\frac{1100}{6}}{1500}\]
\[ = \frac{1100}{1500 \times 6} = \frac{11}{90}\text{ radian}\]
So, the train will turn
\[\frac{11}{90}\] radian in 10 seconds.
APPEARS IN
संबंधित प्रश्न
Find the radian measure corresponding to the following degree measure:
25°
Find the radian measure corresponding to the following degree measure:
– 47° 30'
Find the radian measure corresponding to the following degree measure:
520°
Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).
`(7pi)/6`
In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
21 cm
Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]
Find the degree measure corresponding to the following radian measure:
\[- \frac{5\pi}{6}\]
Find the degree measure corresponding to the following radian measure:
11c
Find the degree measure corresponding to the following radian measure:
1c
Find the radian measure corresponding to the following degree measure:
300°
Find the radian measure corresponding to the following degree measure: 35°
Find the radian measure corresponding to the following degree measure: −300°
Find the radian measure corresponding to the following degree measure: 125° 30'
The difference between the two acute angles of a right-angled triangle is \[\frac{2\pi}{5}\] radians. Express the angles in degrees.
One angle of a triangle \[\frac{2}{3}\] x grades and another is \[\frac{3}{2}\] x degrees while the third is \[\frac{\pi x}{75}\] radians. Express all the angles in degrees.
Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.
The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.
The number of sides of two regular polygons are as 5 : 4 and the difference between their angles is 9°. Find the number of sides of the polygons.
The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.
Find the diameter of the sun in km supposing that it subtends an angle of 32' at the eye of an observer. Given that the distance of the sun is 91 × 106 km.
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.
If D, G and R denote respectively the number of degrees, grades and radians in an angle, the
If the angles of a triangle are in A.P., then the measures of one of the angles in radians is
If OP makes 4 revolutions in one second, the angular velocity in radians per second is
The radius of the circle whose arc of length 15 π cm makes an angle of \[\frac{3\pi}{4}\] radian at the centre is
A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. Find the angle in degrees which is subtended at the centre of hoop.
If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ
Find the value of tan 9° – tan 27° – tan 63° + tan 81°
Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
State whether the statement is True or False? Also give justification.
The equality sinA + sin2A + sin3A = 3 holds for some real value of A.
State whether the statement is True or False? Also give justification.
Sin10° is greater than cos10°
State whether the statement is True or False? Also give justification.
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`