Advertisements
Advertisements
प्रश्न
Find the radian measure corresponding to the following degree measure: 35°
उत्तर
We have:
\[180^\circ = \pi \text{ rad }\]
\[ \therefore 1^\circ = \frac{\pi}{180} \text{ rad }\]
\[ 35^\circ\]
\[ = 35 \times \frac{\pi}{180}\]
\[ = \frac{7\pi}{36} \text{ rad }\]
APPEARS IN
संबंधित प्रश्न
Find the radian measure corresponding to the following degree measure:
240°
Find the radian measure corresponding to the following degree measure:
520°
Find the degree measure corresponding to the following radian measure `(use pi = 22/7)`
`11/16`
Find the degree measure corresponding to the following radian measure (Use `pi = 22/7`)
-4
Find the degree measure corresponding to the following radian measure (use `pi= 22/7`).
`(7pi)/6`
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
10 cm
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
15 cm
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
21 cm
Find the degree measure corresponding to the following radian measure:
\[\frac{9\pi}{5}\]
Find the degree measure corresponding to the following radian measure:
\[\left( \frac{18\pi}{5} \right)\]
Find the degree measure corresponding to the following radian measure:
1c
Find the radian measure corresponding to the following degree measure: −300°
Find the radian measure corresponding to the following degree measure: 125° 30'
Find the magnitude, in radians and degrees, of the interior angle of a regular pentagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular octagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular heptagon.
Find the magnitude, in radians and degrees, of the interior angle of a regular duodecagon.
The angle in one regular polygon is to that in another as 3 : 2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.
The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.
A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?
Find the length which at a distance of 5280 m will subtend an angle of 1' at the eye.
A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?
The radius of a circle is 30 cm. Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm.
Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.
If the angles of a triangle are in A.P., then the measures of one of the angles in radians is
The angle between the minute and hour hands of a clock at 8:30 is
At 3:40, the hour and minute hands of a clock are inclined at
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, than the ratio of the radii of the circles is
If OP makes 4 revolutions in one second, the angular velocity in radians per second is
A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. Find the angle in degrees which is subtended at the centre of hoop.
If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ
Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ”
State whether the statement is True or False? Also give justification.
Sin10° is greater than cos10°
State whether the statement is True or False? Also give justification.
One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.