Advertisements
Advertisements
प्रश्न
Write the maximum and minimum values of cos (cos x).
उत्तर
We know:
\[ - 1 \leq \cos x \leq 1\]
\[\text{ Also,} \cos\left( - \theta \right) = \cos\theta\]
\[\text{ When the angle increases from 0 to }\frac{\pi}{2}, \text{ the value of }\cos\theta\text{ decreases . }\]
\[ \therefore\text{ Maximum value of }\cos\left[ \cos\left( x \right) \right] = \cos\left( 0 \right) = 1'\]
\[\text{ And, minimum value of }\cos\left[ \cos\left( x \right) \right] = cos\left( 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Write the maximum and minimum values of sin (sin x).
Write the maximum value of sin (cos x).
If sin x = cos2 x, then write the value of cos2 x (1 + cos2 x).
If sin x + cosec x = 2, then write the value of sinn x + cosecn x.
If sin x + sin2 x = 1, then write the value of cos12 x + 3 cos10 x + 3 cos8 x + cos6 x.
If sin x + sin2 x = 1, then write the value of cos8 x + 2 cos6 x + cos4 x.
If sin θ1 + sin θ2 + sin θ3 = 3, then write the value of cos θ1 + cos θ2 + cos θ3.
Write the value of sin 10° + sin 20° + sin 30° + ... + sin 360°.
A circular wire of radius 15 cm is cut and bent so as to lie along the circumference of a loop of radius 120 cm. Write the measure of the angle subtended by it at the centre of the loop.
Write the value of 2 (sin6 x + cos6 x) −3 (sin4 x + cos4 x) + 1.
Write the value of cos 1° + cos 2° + cos 3° + ... + cos 180°.
If cot (α + β) = 0, then write the value of sin (α + 2β).
If tan A + cot A = 4, then write the value of tan4 A + cot4 A.
Write the least value of cos2 x + sec2 x.
If 3 sin x + 5 cos x = 5, then write the value of 5 sin x − 3 cos x.