मराठी

If Sin X + Sin2 X = 1, Then Write the Value of Cos12 X + 3 Cos10 X + 3 Cos8 X + Cos6 X. - Mathematics

Advertisements
Advertisements

प्रश्न

If sin x + sin2 x = 1, then write the value of cos12 x + 3 cos10 x + 3 cos8 x + cos6 x.

 

उत्तर

We have: 
\[\sin x + \sin^2 x = 1 \left( 1 \right)\]
\[ \Rightarrow \sin x = 1 - \sin^2 x\]
\[ \Rightarrow \sin x = co s^2 x \left( 2 \right)\]
Now, taking cube of  (1) :
\[\sin x + \sin^2 x = 1\]
\[ \Rightarrow \left( \sin x + \sin^2 x \right)^3 = \left( 1 \right)^3 \]
\[ \Rightarrow \left( \sin x \right)^3 + \left( \sin^2 x \right)^3 + 3 \left( \sin x \right)^2 \left( \sin^2 x \right) + 3\left( \sin x \right) \left( \sin^2 x \right)^2 = 1\]
\[ \Rightarrow \left( \sin x \right)^3 + \left( \sin x \right)^6 + 3 \left( \sin x \right)^4 + 3 \left( \sin x \right)^5 = 1\]
\[ \Rightarrow \left( \sin x \right)^6 + 3 \left( \sin x \right)^5 + 3 \left( \sin x \right)^4 + \left( \sin x \right)^3 = 1\]
\[ \Rightarrow \left( \cos^2 x \right)^6 + 3 \left( \cos^2 x \right)^5 + 3 \left( \cos^2 x \right)^4 + \left( \cos^2 x \right)^3 = 1\]
\[ \Rightarrow \cos^{12} x + 3 \cos^{10} x + 3 \cos^8 x + \cos^6 x = 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.4 | Q 6 | पृष्ठ ४०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×