Advertisements
Advertisements
प्रश्न
In a ∆ABC, prove the following, `("a"sin("B" - "C"))/("b"^2 - "c"^2) = ("b"sin("C" - "A"))/("c"^2 - "a"^2) = ("c"sin("A" - "B"))/("a"^2 - "b"^2)`
उत्तर
We know `"a"/sin"A" = "b"/sin"B" = "c"/sin"C"` = 2R
`"a"/sin"A"` = 2R ⇒ a = 2R sin A
`"b"/sin"B"` = 2R ⇒ b = 2R sin B
`"c"/sin"C"` = 2R ⇒ c = 2R sin C
Also sin(A + B) . sin(A – B) = sin2A – sin2B
`("a"sin("B" - "C"))/("b"^2 - "c"^2) = (2"R" sin"A" sin("B" - "C"))/((2"R" sin"B")^2 - (2"R" sin"C")^2`
= `(2"R" sin"A" sin("B" - "C"))/(4"R"^2 sin^2"B" - 4"R"^2 sin^2"C")`
= `(2"R" sin"A" sin("B" - "C"))/(4"R"^2 (sin^2"B" - sin^2"C"))`
= `(2"R" sin"A" sin("B" - "C"))/(4"R"^2 sin("B" + "C") sin("B" - "C"))`
= `sin"A"/(2"R" sin("B" + "C"))`
= `sin"A"/(2"R"sin(180^circ - "A"))`
= `sin"A"/(2"R" sin "A")`
`("a"sin("B" - "C"))/("b"^2 - "c"^2) = 1/(2"R")` ......(1)
`("b"sin("C" - "A"))/("c"^2 - "a"^2) = (2"R" sin"B" sin("C" - "A"))/((2"R" sin"C")^2 - (2"R"sin"A")^2`
= `(2"R" sin"B" sin("C" - "A"))/(4"R"^2 sin^2"C" - 4"R"^2 sin^2"A")`
= `(2"R" sin"B" * sin("C" - "A"))/(4"R"^2 (sin^2"C" - sin^2"A"))`
= `(sin"B" * sin("C" - "A"))/(2"R" sin("C" + "A") sin("C" - "A"))`
= `(sin"B" * sin("C" - "A"))/(2"R" * sin("C" + "A") * sin("C" - "A"))`
= `sin "B"/(2"R"sin("C" + "A"))`
= `sin "B"/(2"R" sin(180^circ - "B"))`
= `sin"B"/(2"R" sin "B")`
`("b"sin("C" - "A"))/("c"^2 - "a"^2) = 1/(2"R")` ......(2)
`("c"sin("A" - "B"))/("a"^2 - "b"^2) = (2"R" sin"C" sin("A" - "B"))/((2"R" sin"A")^2 - (2"R"sin "B")^2)`
= `(2"R" sin"C" sin("A" - "B"))/(4"R"^2 sin^2"A" - 4"R"^2 sin^2"B")`
= `(2"" sin"C" sin("A" - "B"))/(4"R"^2 (sin^2"A" - sin^2"B"))`
= `(2"R" sin"C" sin("A" - "B"))/(4"R"^2 sin("A" + "B") sin("A" - "B"))`
= `sin"C"/(2"R"sin("A" +"B"))`
= `sin"C"/(2"R"sin(180^circ - "C"))`
= `sin"C"/(2"R" sin"C")`
`("c"sin("A" - "B"))/("a"^2 - "b"^2) = 1/(2"R")` ......(3)
From equations (1), (2) and (3)
`("a"sin("B" - "C"))/("b"^2 - "c"^2) = ("b"sin("C" - "A"))/("c"^2 - "a"^2) = ("c"sin("A" - "B"))/("a"^2 - "b"^2)`
APPEARS IN
संबंधित प्रश्न
In a ∆ABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))` prove that a2, b2, C2 are in Arithmetic Progression
The angles of a triangle ABC, are in Arithmetic Progression and if b : c = `sqrt(3) : sqrt(2)`, find ∠A
In a ∆ABC, if cos C = `sin "A"/(2sin"B")` show that the triangle is isosceles
In a ∆ABC, prove that `sin "B"/sin "C" = ("c" - "a"cos "B")/("b" - "a" cos"C")`
In an ∆ABC, prove that a cos A + b cos B + c cos C = 2a sin B sin C
In a ∆ABC, ∠A = 60°. Prove that b + c = `2"a" cos (("B" - "C")/2)`
In an ∆ABC, prove the following, `"a"sin ("A"/2 + "B") = ("b" + "c") sin "A"/2`
In a ∆ABC, prove the following, a(cos B + cos C) = `2("b" + "c") sin^2 "A"/2`
In a ∆ABC, prove the following, `("a"^2 - "c"^2)/"b"^2 = (sin ("A" - "C"))/(sin("A" + "C"))`
In a ∆ABC, prove that (a2 – b2 + c2) tan B = (a2 + b2 – c2) tan C
Derive Projection formula from Law of cosines
Choose the correct alternative:
In a ∆ABC, if
(i) `sin "A"/2 sin "B"/2 sin "C"/2 > 0`
(ii) sin A sin B sin C > 0 then
A circle touches two of the smaller sides of a ΔABC (a < b < c) and has its centre on the greatest side. Then the radius of the circle is ______.
In a ΔABC, let BC = 3. D is a point on BC such that BD = 2, Then the value of AB2 + 2AC2 – 3AD2 is ______.
In usual notation a ΔABC, if A, A1, A2, A3 be the area of the in-circle and ex-circles, then `1/sqrt(A_1) + 1/sqrt(A_2) + 1/sqrt(A_3)` is equal to ______.
If in a ΔABC, the altitudes from the vertices A, B, C on opposite sides are in H.P, then sin A, sin B, sin C are in ______