Advertisements
Advertisements
प्रश्न
In a ∆ABC, ∠A = 60°. Prove that b + c = `2"a" cos (("B" - "C")/2)`
उत्तर
Given ∠A = 60°
A + B + C = 180°
60° + B + C = 180°
B + C = 180° – 60° = 120°
We have `"a"/sin"A" = "b"/sin"B" = "c"/sin"C"` = 2R
`"a"/sin"A"` = 2R ⇒ a = 2R sin A
`"b"/sin"B"` = 2R ⇒ b = 2R sin B
`"c"/sin"C"` = 2R ⇒ c = 2R sin C
b + c = 2R sin B + 2R sin C
= 2R (sin B + sin C)
= `2"R" * 2sin (("B" + "C")/2) * cos (("B" - "C")/2)`
= `4"R" * sin(120^circ/2) * cos (("B" - "C")/2)`
= `4"R" * sin 60^circ * cos (("B" - "C")/2)`
= `2 * 2"R" * sin"A" * cos (("B" - "C")/2)`
b + c = `2"A" cos (("B" - "C")/2)`
APPEARS IN
संबंधित प्रश्न
In a ∆ABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))` prove that a2, b2, C2 are in Arithmetic Progression
The angles of a triangle ABC, are in Arithmetic Progression and if b : c = `sqrt(3) : sqrt(2)`, find ∠A
In a ∆ABC, if cos C = `sin "A"/(2sin"B")` show that the triangle is isosceles
In a ∆ABC, prove that `sin "B"/sin "C" = ("c" - "a"cos "B")/("b" - "a" cos"C")`
In an ∆ABC, prove that a cos A + b cos B + c cos C = 2a sin B sin C
In a ∆ABC, prove the following, a(cos B + cos C) = `2("b" + "c") sin^2 "A"/2`
In a ∆ABC, prove the following, `("a"^2 - "c"^2)/"b"^2 = (sin ("A" - "C"))/(sin("A" + "C"))`
In a ∆ABC, prove the following, `("a"+ "b")/("a" - "b") = tan(("A" + "B")/2) cot(("A" - "B")/2)`
In a ∆ABC, prove that (a2 – b2 + c2) tan B = (a2 + b2 – c2) tan C
A rope of length 42 m is given. Find the largest area of the triangle formed by this rope and find the dimensions of the triangle so formed
Derive Projection formula from Law of sines
Choose the correct alternative:
In a ∆ABC, if
(i) `sin "A"/2 sin "B"/2 sin "C"/2 > 0`
(ii) sin A sin B sin C > 0 then
In a ΔABC, let BC = 3. D is a point on BC such that BD = 2, Then the value of AB2 + 2AC2 – 3AD2 is ______.
In an equilateral triangle of side `2sqrt(3)` cm, the circum radius is ______.
If in a ΔABC, the altitudes from the vertices A, B, C on opposite sides are in H.P, then sin A, sin B, sin C are in ______