Advertisements
Advertisements
प्रश्न
In a ∆ABC, prove the following, a(cos B + cos C) = `2("b" + "c") sin^2 "A"/2`
उत्तर
We have `"a"/sin"A" = "b"/sin"B" ="c"/sin"C"` = 2R
`"a"/sin"A"` = 2R ⇒ a = 2R sin A
`"b"/sin"B"` = 2R ⇒ b = 2R sin B
`"c"/sin"C"` = 2R ⇒ c = 2R sin C
a(cos B + cos C) = `2("b" + "c") sin^2 "A"/2`
`(cos "B" + cos "C")/(2sin^2 "A"/2) ("b" + "c")/"a"` .....(1)
`("b" + "c")/"a" = (2"R" sin"B" + 2"R" sin"C")/(2"R" sin "A")`
= `(sin "B" + sin "C")/sin "A"`
= `(2sin (("B" + "C")/2) * cos (("B" - "C")/2))/(2 sin "A"/2 cos "A"/2)`
= `(sin (pi/2 - "A"/2) * cos ("B"/2 - "C"/2))/(sin "A"/2 * cos "A"/2)`
= `(cos ("A"/2) * cos ["B"/2 - (pi/2 - ("A"/2+ "B"/2))])/(sin "A"/ cos "A"/2)`
= `(cos ["B"/2 - pi/2 + "A"/2 + "B"/2])/(sin "A"/2)`
= `(cos["B" + "A"/2 - pi/2])/(sin "A"/2)`
= `(cos[pi/2 - ("A"/2 + "B")])/(sin "A"/2) cos(- theta)` = cos θ
= `(sin ("A"/2 + "B"))/(sin "A"/2)`
= `(2 sin "A"/2 * sin ("A"/2 + "B"))/(2sin "A"/2 * sin "A"/2)`
= `(2sin "A"/2 (sin "A"/2 cos "B" + cos "A"/2 sin "B"))/(2 sin "A"/2 sin "A"/2)`
= `(2sin^2 "A"/2 cos "B" + 2sin "A"/2 cos "A"/2 sin "B")/(2 sin^2 "A"/2)`
= `((1 - cos "A") cos "B" + sin "A" sin "B")/(2sin^2 "A"/2)`
= `(cos "B" - cos"A" cos"B" + sin"A" sin"B")/(2sin^2 "A"/2)`
= `(cos "B" - (cos "A" cos "B" + sin "A" sin "B"))/(2sin^2 "A"/2)`
= `(cos "B" - cos("A" + "B"))/(2 sin^2 "A"/2)`
= `(cos"B" - cos(180 - "C"))/(2sin^2 "A"/2)`
`("b"+ "c")/"a" = (cos"B" + cos"C")/(2sin^2 "A"/2)` .....(2)
From equations (1) and (2), result follows
APPEARS IN
संबंधित प्रश्न
The angles of a triangle ABC, are in Arithmetic Progression and if b : c = `sqrt(3) : sqrt(2)`, find ∠A
In a ∆ABC, if cos C = `sin "A"/(2sin"B")` show that the triangle is isosceles
In a ∆ABC, prove that `sin "B"/sin "C" = ("c" - "a"cos "B")/("b" - "a" cos"C")`
In an ∆ABC, prove that a cos A + b cos B + c cos C = 2a sin B sin C
In a ∆ABC, ∠A = 60°. Prove that b + c = `2"a" cos (("B" - "C")/2)`
In an ∆ABC, prove the following, `"a"sin ("A"/2 + "B") = ("b" + "c") sin "A"/2`
In a ∆ABC, prove the following, `("a"^2 - "c"^2)/"b"^2 = (sin ("A" - "C"))/(sin("A" + "C"))`
In a ∆ABC, prove the following, `("a"sin("B" - "C"))/("b"^2 - "c"^2) = ("b"sin("C" - "A"))/("c"^2 - "a"^2) = ("c"sin("A" - "B"))/("a"^2 - "b"^2)`
In a ∆ABC, prove the following, `("a"+ "b")/("a" - "b") = tan(("A" + "B")/2) cot(("A" - "B")/2)`
In a ∆ABC, prove that (a2 – b2 + c2) tan B = (a2 + b2 – c2) tan C
An Engineer has to develop a triangular shaped park with a perimeter 120 m in a village. The park to be developed must be of maximum area. Find out the dimensions of the park
Derive Projection formula from Law of cosines
A circle touches two of the smaller sides of a ΔABC (a < b < c) and has its centre on the greatest side. Then the radius of the circle is ______.
In usual notation a ΔABC, if A, A1, A2, A3 be the area of the in-circle and ex-circles, then `1/sqrt(A_1) + 1/sqrt(A_2) + 1/sqrt(A_3)` is equal to ______.
If in a ΔABC, the altitudes from the vertices A, B, C on opposite sides are in H.P, then sin A, sin B, sin C are in ______