English

If 3 Sin X + 5 Cos X = 5, Then Write the Value of 5 Sin X − 3 Cos X. - Mathematics

Advertisements
Advertisements

Question

If 3 sin x + 5 cos x = 5, then write the value of 5 sin x − 3 cos x.

 

Solution

\[3 \sin x + 5 \cos x = 5 \left( Given \right)\]
Squaring both the sides: 
\[9 \sin^2 x + 25 \cos^2 x + 30 \sin x \cos x = 25\]
\[30 \sin x \cos x = 25 - 9 \sin^2 x - 25 \cos^2 x (1)\]
\[\text{ We have to find the value of 5 }\sin \theta - 3 \cos \theta . \]
\[ \left( 5 \sin x - 3 \cos x \right)^2 = 25 \sin^2 x + 9 \cos^2 x - 30 \sin x \cos x\]
\[ \left( 5 \sin x - 3 \cos x \right)^2 = 25 \sin^2 x + 9 \cos^2 x - \left( 25 - 9 \sin^2 x - 25 \cos^2 x \right) \left[\text{ From }(1) \right]\]
\[ \left( 5 \sin x - 3 \cos x \right)^2 = 34 \sin^2 x + 34 \cos^2 x - 25\]
\[ \left( 5 \sin x - 3 \cos x \right)^2 = 34 - 25 \left( \because \sin^2 x + \cos^2 x = 1 \right)\]
\[ \left( 5 \sin x - 3 \cos x \right)^2 = 9\]
\[5 \sin x - 3 \cos x = \pm 3\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.4 [Page 41]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.4 | Q 17 | Page 41
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×