Advertisements
Advertisements
Question
If sin x = cos2 x, then write the value of cos2 x (1 + cos2 x).
Solution
We have:
\[\sin x = \cos^2 x \left( 1 \right)\]
\[ \therefore \cos^2 x \left( 1 + \cos^2 x \right)\]
\[ = \sin x\left( 1 + \sin x \right) \left[\text{ Using }\left( 1 \right) \right]\]
\[ = \sin x + \sin^2 x\]
\[ = \sin x + 1 - \cos^2 x\]
\[ = \sin x + 1 - \sin x \left[\text{ Using }\left( 1 \right) \right]\]
\[ = 1\]
APPEARS IN
RELATED QUESTIONS
Write the maximum and minimum values of cos (cos x).
Write the maximum and minimum values of sin (sin x).
Write the maximum value of sin (cos x).
If sin x + cosec x = 2, then write the value of sinn x + cosecn x.
If sin x + sin2 x = 1, then write the value of cos12 x + 3 cos10 x + 3 cos8 x + cos6 x.
If sin x + sin2 x = 1, then write the value of cos8 x + 2 cos6 x + cos4 x.
If sin θ1 + sin θ2 + sin θ3 = 3, then write the value of cos θ1 + cos θ2 + cos θ3.
Write the value of sin 10° + sin 20° + sin 30° + ... + sin 360°.
A circular wire of radius 15 cm is cut and bent so as to lie along the circumference of a loop of radius 120 cm. Write the measure of the angle subtended by it at the centre of the loop.
Write the value of 2 (sin6 x + cos6 x) −3 (sin4 x + cos4 x) + 1.
Write the value of cos 1° + cos 2° + cos 3° + ... + cos 180°.
If cot (α + β) = 0, then write the value of sin (α + 2β).
If tan A + cot A = 4, then write the value of tan4 A + cot4 A.
Write the least value of cos2 x + sec2 x.
If 3 sin x + 5 cos x = 5, then write the value of 5 sin x − 3 cos x.