Advertisements
Advertisements
प्रश्न
Prove that sin 105° + cos 105° = cos 45°
उत्तर
sin 105° + cos 105° = sin(90° + 15°) + cos(90° + 15°)
= cos 15° – sin 15°
= cos(45° – 30°) sin(45° – 30°)
= (cos 45° . cos30° + sin 45° sin 30°) – (sin 45° cos 30° – cos 45° sin 30°)
= `(1/sqrt(2) * sqrt(3)/2 + 1/sqrt(2) * 1/sqrt(2)) - (1/sqrt(2) * sqrt(3)/2 - 1/sqrt(2) * 1/sqrt(2))`
= `sqrt(3)/(2sqrt(2)) + 1/(2sqrt(2)) - sqrt(3)/(2sqrt(2)) + 1/(2sqrt(2))`
= `2/(2sqrt(2))`
= `1/sqrt(2)`
= cos 45°
APPEARS IN
संबंधित प्रश्न
Find the values of `sin (-(11pi)/3)`
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of tan `(7pi)/12`
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that sin(π + θ) = − sin θ.
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Express the following as a sum or difference
sin 5θ sin 4θ
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1