मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Find the value of cos 2A, A lies in the first quadrant, when cos A = 1517 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`

बेरीज

उत्तर

we know sin2A + cos2A = 1

sin2A = 1 – cos2A

= `1 - (15/17)^2`

= `1 - 225/289`

= `(289 - 225)/289`

sin2A = `64/289`

sin A = `+- sqrt(64/289)`

= `+- 8/17`

Since A lies in the first quadrant, sin A is positive

∴ sin A = `8/17`

cos 2A = cos2A – sin2A

= `(15/17)^2 - 64/289`

=`225/289 - 64/289`

= `(225- 64)/289`

= `161/289`

shaalaa.com
Trigonometric Functions and Their Properties
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometry - Exercise 3.5 [पृष्ठ ११७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 3 Trigonometry
Exercise 3.5 | Q 1. (i) | पृष्ठ ११७

संबंधित प्रश्‍न

Find the values of `tan ((19pi)/3)`


If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)


Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2`  and sin y = `- 24/25` with `pi < y < (3pi)/2`


Prove that sin(π + θ) = − sin θ.


Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`


Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`


Prove that sin 75° – sin 15° = cos 105° + cos 15°


Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z


Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`


Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ


Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`


Express the following as a product
sin 75° sin 35°


Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x


Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x


Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`


If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C


If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sinB + sinC = 1


If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos  "B"/2  sin  "C"/2`


Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×