Advertisements
Advertisements
प्रश्न
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
उत्तर
we know sin2A + cos2A = 1
sin2A = 1 – cos2A
= `1 - (15/17)^2`
= `1 - 225/289`
= `(289 - 225)/289`
sin2A = `64/289`
sin A = `+- sqrt(64/289)`
= `+- 8/17`
Since A lies in the first quadrant, sin A is positive
∴ sin A = `8/17`
cos 2A = cos2A – sin2A
= `(15/17)^2 - 64/289`
=`225/289 - 64/289`
= `(225- 64)/289`
= `161/289`
APPEARS IN
संबंधित प्रश्न
Find the values of `tan ((19pi)/3)`
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Prove that sin(π + θ) = − sin θ.
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Prove that sin 75° – sin 15° = cos 105° + cos 15°
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Express the following as a product
sin 75° sin 35°
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to