Advertisements
Advertisements
प्रश्न
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
उत्तर
`(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A")) = (sin{(4"A" - 2"B" + 4"B" - 2"A")/2} cos {(4"A" - 2"B" - 4"B" + 2"A")/2})/(cos{(4"A" - 2"B" + 4"B" - 2"A")/2} cos{(4"A" - 2"B" - 4"B" + 2"A")/2})`
= `(sin((2"A" + 2"B")/2) * cos((6"A" - 6"B")/2))/(cos((2"A" + 2"B")/2) * cos((6"A" - 6"B")/2)`
= `(sin("A" + "B"))/(cos("A" + "B"))`
= tan(A + B)
APPEARS IN
संबंधित प्रश्न
Find the values of `sin (-(11pi)/3)`
Find a quadratic equation whose roots are sin 15° and cos 15°
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Prove that sin 105° + cos 105° = cos 45°
Show that tan 75° + cot 75° = 4
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a product
sin 50° + sin 40°
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =