Advertisements
Advertisements
प्रश्न
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
उत्तर
`cos (pi/4 + theta/2)`, when sin θ = `8/9`
`cos (pi/4 + theta/2) = sqrt((1 + cos2 (pi/4 + theta/2))/2`
= `sqrt((1 + cos (pi/2 + theta))/2`
= `sqrt((1 - sin theta)/2`
= `sqrt((1 - 8/9)/2`
= `sqrt((9 - 8)/18`
= `sqrt(1/18)`
= `sqrt(1/(9 xx 2))`
= `1/(3sqrt(2))`
APPEARS IN
संबंधित प्रश्न
Find the values of `tan ((19pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Express the following as a product
cos 65° + cos 15°
Show that sin 12° sin 48° sin 54° = `1/8`
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to