Advertisements
Advertisements
Question
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
Options
sin 2 (θ + Φ)
cos 2 (8 + Φ)
sin 2 (θ – Φ)
cos 2(θ – Φ)
Solution
cos 2 (8 + Φ)
APPEARS IN
RELATED QUESTIONS
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the principal value of `cosec^(-1)(-sqrt2)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Evaluate:
`cos[tan^-1 (3/4)]`
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
`"cos" 2 theta` is not equal to ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to