English

`Sin^-1{Cos(Sin^-1 Sqrt3/2)}` - Mathematics

Advertisements
Advertisements

Question

`sin^-1{cos(sin^-1  sqrt3/2)}`

Solution

`sin^-1{cos(sin^-1  sqrt3/2)}=sin^-1{cos(sin^-1  sin    pi/3)}`

`=sin^-1{cos(pi/3)}`

`=sin^-1{1/2}`

`=sin^-1{sin  pi/6}`

`=pi/6`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.01 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.01 | Q 2.2 | Page 7

RELATED QUESTIONS

Find the principal value of  `cos^(-1) (-1/2)`


Find the principal value of  `sec^(-1) (2/sqrt(3))`


Find the principal value of `cosec^(-1)(-sqrt2)`


Find the value of the following:

`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`


Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


Find the principal value of the following: `sin^-1 (1/2)`


Find the principal value of the following: cosec- 1(2)


Evaluate the following:

`cos^-1(1/2) + 2sin^-1(1/2)`


Evaluate the following:

`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`


The principal value of sin−1`(1/2)` is ______


Evaluate:

`sin[cos^-1 (3/5)]`


Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1


Prove that:

`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`


Solve `tan^-1 2x + tan^-1 3x = pi/4`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Find the principal value of `sec^-1 (- sqrt(2))`


Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


`cos(2sin^-1  3/4+cos^-1  3/4)=` ______.


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.


Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`


Show that `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


Solve the following equation `cos(tan^-1x) = sin(cot^-1  3/4)`


Prove that `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


All trigonometric functions have inverse over their respective domains.


`"sin"^-1 (-1/2)`


`"sin"^-1 (1/sqrt2)`


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


If f'(x) = x–1, then find f(x)


If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.


Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×